Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке

Курсовая работа на тему «Методы сбора и обработки цифровых сигналов»

Практическая значимость: современные информационно-измерительные системы можно рассматривать как специализированные вычислительные системы, предназначенные для сбора и обработки данных, а также анализа и представления зарегистрированной информации с применением методов автоматизации.

Реферат

Курсовая работа 34 страницы, 12 рисунков, 2 таблицы, 13 формул, 14 источников.

Ключевые слова: аналоговый сигнал, цифровой сигнал, двоичный код, аналого-цифровой преобразователь, цифро-аналоговый преобразователь, система сбора данных, комплекс передачи информации, дискретизация сигнала, квантование сигнала, дискретное преобразование Фурье.

Цель работы: Изучить понятие цифрового сигнала, его виды и классификации. Познакомиться с методами сбора цифровых сигналов, понятием интерфейса измерительных систем. Исследовать обработку цифровых сигналов. Привести примеры цифровых автоматизированных систем сбора и обработки информации.

Практическая значимость: современные информационно-измерительные системы можно рассматривать как специализированные вычислительные системы, предназначенные для сбора и обработки данных, а также анализа и представления зарегистрированной информации с применением методов автоматизации. Примерами областей, где автоматизация процедур сбора и обработки данных актуальна и широко применяется могут служить гидрофизика, акустика, медицина. Важнейшей задачей является обеспечение научных исследований современными и эффективными аппаратными, алгоритмическими и программными средствами сбора, обработки и анализа данных.

Во многих областях науки наблюдается тенденция повысить степень автоматизации проведения эксперимента, улучшить эффективность обработки данных с помощью цифровых методов обработки сигналов, сократить временные затраты на анализ и систематизацию полученной информации. Все чаще необходимо проводить эксперименты в реальном времени с использованием многоканальных входных потоков данных, что, естественно, предъявляет жесткие требования к производительности вычислительной системы. Для решения таких задач актуальна разработка эффективных алгоритмов обработки сигналов с использованием ресурсов процессоров цифровой обработки сигналов в составе информационно-измерительных комплексов.

В данной работе будут изучены основные составляющие аналого-цифровой последовательности преобразования. Рассмотрены принципы работы, типы и виды данных элементов. Представлены некоторые способы обработки полученного сигнала.

Содержание

Введение

. Сигнал. Его виды и представления

.1 Позиционные системы счисления

. Система сбора данных. Ее виды и типы

.Аналого-цифровые преобразователи

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать курсовую

.1 Основные характеристики АЦП

.2 Типы АЦП2

. Цифро-аналоговые преобразователи.

.1 Наиболее общие типы электронных ЦАП

.2 Характеристики ЦАП

. Системы передачи данных. Режимы и принципы обмена, способы соединения. Метод приема-передачи

6. Квантование сигнала, его виды. Типы преобразования и обработки сигнала

6.1 Виды квантования

.2 Обработка цифровых сигналов

.2.1 Преобразования Фурье (ДПФ, БПФ)

.2.2 Передискретизация. Ее применение на практике

.2.3 Свёртка. Ее виды. Расчет

.2.4Спектральный анализ. Спектральная плотность мощности. Автокорреляция. Оконные функции

.2.5 Цифровые фильтры. Их виды. Применение

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать курсовую

7. Цифровые автоматизированные системы сбора и обработки информации

Заключение

Список используемой литературы

Введение

Современный этап развития электроники характеризуется появлением микропроцессорных сверхбольших интегральных схем, цифровых сигнальных процессоров, программируемых логических интегральных схем, позволяющих решать задачи обработки сигналов при высоких технико-экономических показателях. Аналоговые технологии стали устаревать и не соответствовать всем требованиям микропроцессорного мира. Цифровая электроника преобразила системы сбора, обработки и передачи информации, но осталась немыслима без аналоговых технологий.

Цифровая обработка информации необходима при контроле состояния сложных объектов, которые могут быть как техническими, так и биологическими. Для получения целостной картины о состоянии объекта контроля, все измерения необходимо проводить одновременно, что достигается применением многоканальных цифровых измерительных систем построенных про принципу временного разделения каналов.

Вместе с цифровыми сигналами стали существовать такие ключевые понятия как: Аналого-цифровые преобразователи (АЦП), обратные им, Цифро-аналоговые преобразователи (ЦАП), Преобразования Фурье (ДПФ, БПФ) и двоичный код. Начали свое существование компьютеры, мобильные телефоны, цифровое телевидение и др. детища электроники. Скорости и качества передачи информационных сигналов во много раз превзошли существующих значений.

В настоящее время развитие компьютерных технологий практически невозможно без использования различных интерфейсов (узлы, порты, разъемы), которые обеспечивают согласованность действий оборудования компьютеров, простоту использования и нормальную работу компьютера. В результате чего, интерфейсы активно развиваются и совершенствуются, увеличивая свои функциональные возможности.

.       
Сигнал. Его виды и представления

Вся информация передается в виде сигналов. Сигнал есть физический процесс, несущий в себе информацию. Сигнал может быть звуковым, световым, в виде почтового отправления и др. Наиболее распространен сигнал в электрической форме в виде зависимости напряжения от времени U(t). По своей природе все сигналы являются аналоговыми, будь то сигнал постоянного или переменного тока, цифровой или импульсный. Тем не менее, принято делать различие между аналоговыми и цифровыми сигналами.

Аналоговый сигнал — сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений. Такие сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют непрерывным сигналом.

Цифровым сигналом называется двухуровневый сигнал, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений определённым образом обработанный и преобразованный в цифры. Обычно эти цифровые сигналы связаны с реальными аналоговыми сигналами, но иногда между ними и нет связи. В качестве примера можно привести передачу данных в локальных вычислительных сетях (LAN) или в других высокоскоростных сетях.

Рисунок 1 — Различия сигналов

Цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания — это разница между максимальной и минимальной частотой, которая может быть передана по кабелю. Каждое устройство в таких сетях посылает данные в обоих направлениях, а некоторые могут одновременно принимать и передавать. Узкополосные системы передают данные в виде цифрового сигнала одной частоты.[5]

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Подробнее

Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал, поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.

Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым. Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе / частоте поляризации. Но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).

.1 Позиционные системы счисления

цифровой сигнал квантование передача

Для понимания систем счисления и принципа передачи цифровых сигналов необходимо коснуться некоторых понятий:

Код — двоичное число, а также метод представления двоичных чисел;

Разрядность кода — количество двоичных разрядов кода (210 = 1 024, 220 = 1 048 576; 230 = 1 073 741 824);

Бит — один разряд двоичного числа (от англ. binary digit);

Байт — восемь двоичных разрядов (битов) — принимает 28 значений: от 0 до 255;

Слово — код, состоящий из нескольких байтов (чаще всего 2 байта — 16 разрядов, 4 байта — 32 разряда, 8 байт — 64 разряда);

Любой цифровой сигнал состоит из так называемого «двоичного кода».

Двоичная система счисления — позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах. Здесь, за единицы информации используются логический 0 (ноль), и логическая 1 (единица). В цифровых электронных микросхемах за единицы логической 1 и 0, принимают определенный уровень электрического напряжения в вольтах. Так, к примеру, логическая единица будет означать 4,5 вольта, а за логический ноль 0,5 вольт. Естественно для каждого типа цифровых микросхем, значения величины напряжений логического нуля и единицы, разные.

В двоичной системе счисления числа записываются, как уже стало понятно, с помощью двух символов (0 и 1). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 510, в двоичной 1012. Иногда двоичное число обозначают префиксом 0b или символом & (амперсанд), например 0b101 или соответственно &101.

В двоичной системе счисления (как и в других системах счисления, кроме десятичной) знаки читаются по одному. Например, число 1012 произносится «один ноль один».[8]

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать курсовую

Наглядно посмотреть, как преобразуются числа разных систем счислений можно в таблице ниже:

Таблица 1 — Примеры преобразований в 2-ичной системе

 

Другим примером позиционной системы счисления является Шестнадцатеричная система счисления (шестнадцатеричные числа) -позиционная система счисления по целочисленному основанию 16.

Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 1010 до 1510, то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

Такая система широко используется в низкоуровневом программировании и компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с 8-битными символами, как, например, PDP-11 или БЭСМ-6) использовали восьмеричную систему.

На рисунке 3 видно, с помощью каких преобразований длинный двоичный код конструируется в удобное для работы 16-ричное представление.

Рисунок 3 — Перевод 2-ичного кода в 16-ричный

Как десятичные числа отображаются в шестнадцатеричном счислении представлено в таблице 2:

Таблица 2 — Примеры преобразований в 16-ричной системе

2.      Система сбора данных. Ее виды и типы

Прежде чем сигнал, а он же информация, поступит на компьютер, он должен пройти первичную обработку, так называемую, подготовку перед передачей. Сбором, первичной обработкой, хранением и последующей передачей занимается отдельная система.

Система сбора данных (ССД) представляет собой набор аппаратных и программных средств, предназначенный для работы с персональным компьютером, либо специализированной ЭВМ и осуществляющий автоматизированный сбор информации о значении физических параметров в заданных точках объекта исследования, первичную обработку, хранение и передачу данных.

По способу сопряжения с компьютером системы сбора данных можно разделить на:

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать курсовую

·              ССД на основе встраиваемых плат сбора данных со стандартным системным интерфейсом (наиболее распространен интерфейс PCI).

·              ССД на основе модулей сбора данных с внешним интерфейсом (RS-232, RS-485, USB).

·              ССД, выполненные в виде крейтов (магистрально-модульные ССД — КАМАК, VXI).

Группы цифровых измерительных приборов (ЦИП) или интеллектуальных датчиков. Для их организации применяются интерфейсы: GPIB (IEEE-488), 1-wire, CAN, HART.

По способу получения информации ССД делятся на:

·              сканирующие,

·              мультиплексные (мультиплексорные, иногда говорят «многоточечные»),

·              параллельные,

·              мультиплицированные.

Последний тип ССД практически не используется в силу своего исключительно низкого быстродействия. Единственное достоинство ССД этого типа — относительная простота — полностью нивелируется современными технологиями изготовления интегральных схем.

Сканирующий принцип построения ССД используется там, где надо измерить поле распределения параметров: тепловизор, аппарат УЗИ, томограф используют для получения первичной информации именно ССД сканирующего типа.

Параллельными системами сбора данных следует считать ССД на основе т. н. интеллектуальных датчиков (ИД). Каждый ИД суть одноканальная ССД со специализированным интерфейсом. Исторически первыми параллельными ССД были ССД, где у каждого датчика «личным» был только АЦП, а сбор и обработка данных осуществлялась многопроцессорной ЭВМ. В настоящее время для сбора и обработки измерительной информации как правило вполне хватает вычислительных характеристик «обычной» ЭВМ. Параллельные системы пока еще не вытесняют мультиплексорные, в силу своей аппаратурной избыточности. Однако в ряде случаев параллельный принцип привлекателен: когда есть недорогие готовые ИД и недорогой канал связи (например система на интерфейсе 1-Wire) либо при небольшом числе каналов (выпускаются счетверенные сигма-дельта АЦП) и т. п.

Мультиплексная (мультиплексорная) ССД имеет на каждый измерительный канал индивидуальные средства аналоговой обработки сигнала и общий для всех каналов блок аналого-цифрового преобразования (помимо самого АЦП в него обязательно входит «антиалиасинговый» ФНЧ, устройство выборки хранения, опционально — схема защиты и схема формирования знакового разряда). Наибольшее распространение в настоящее время имеют именно мультиплексные системы сбора данных.

Типовая система сбора данных является мультиплексной и содержит в себе следующие узлы: датчики, аналоговый коммутатор, измерительный усилитель, аналого-цифровой преобразователь, контроллер сбора данных, цифро-аналоговым преобразователем, цифровыми линиями ввода-вывода, модуль интерфейса. Преобразование осуществляется с помощью таких компонентов как: усилители, фильтры, схемы выборки и хранения, мультиплексоры.

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Подробнее

.       
Аналого-цифровые преобразователи

Аналого-цифровой преобразователь (АЦП) — устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал). Формально, входной величиной АЦП может быть любая физическая величина — напряжение, ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.п. Как правило, аналого-цифровой преобразователь — электронное устройство, преобразующее напряжение в двоичный цифровой код. Тем не менее, некоторые неэлектронные устройства с цифровым выходом, следует также относить к этому виду, например, некоторые типы преобразователей угол-код. Простейшим одноразрядным двоичным преобразователем является компаратор.[1]

.1 Основные характеристики АЦП

АЦП имеет множество характеристик, из которых основными можно назвать разрешение, частоту преобразования, разрядность и шум квантования.

Разрешение АЦП — минимальное изменение величины аналогового сигнала, которое может быть преобразовано данным прибором — связано с его разрядностью. В случае единичного измерения без учёта шумов разрешение напрямую определяется разрядностью преобразователя.

Частота преобразования обычно выражается в отсчетах в секунду. Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до миллиарда операций в секунду (конечно, не одновременно). Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.

Разрядность АЦП характеризует количество дискретных значений, которые преобразователь может выдать на выходе. В двоичных приборах измеряется в битах, в троичных- в тритах. Например, двоичный 8-ми разрядный преобразователь способен выдать 256 дискретных значений (0…255), поскольку . Троичный 8-ми разрядный способен выдать 6561 дискретное значение, поскольку .

Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до единиц GigaSPS (конечно, не одновременно). Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и можно повысить эффективную разрядность преобразования, пожертвовав скоростью.

Шум квантования — ошибки, возникающие при оцифровке аналогового сигнала. В зависимости от типа аналого-цифрового преобразования могут возникать из-за округления (до определённого разряда) сигнала или усечения (отбрасывания младших разрядов) сигнала.[1]

.2 Типы АЦП.

Существует множество типов АЦП, однако в рамках данной работы ограничимся рассмотрением только следующих типов:

·              АЦП параллельного преобразования (прямого преобразования, flash ADC)

·              АЦП последовательного приближения (SAR ADC)

·              дельта-сигма АЦП (АЦП с балансировкой заряда)

Существуют также и другие типы АЦП, в том числе конвейерные и комбинированные типы, состоящие из нескольких АЦП с (в общем случае) различной архитектурой. Однако приведенные выше архитектуры АЦП являются наиболее показательными в силу того, что каждая архитектура занимает определенную нишу в общем диапазоне скорость-разрядность.
Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Здесь можно отметить, что еще большим быстродействием обладают конвейерные АЦП (pipelined ADC), однако они являются комбинацией нескольких АЦП.

Рисунок 4 — Структурная схема АЦП параллельного преобразования

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать курсовую

Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100KSPS-1MSPS.

Рисунок 5 — Структурная схема АЦП последовательного приближения

Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до единиц KSPS.

Рисунок 6 — Блок-схема сигма-дельта АЦП

Еще одним типом АЦП, который находил применение в недавнем прошлом, является интегрирующий АЦП. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в старых измерительных приборах.

Проделав долгий путь, претерпев ряд преобразований, информация об измеряемой физической величине попадает на вход обработчика цифрового сигнала. В качестве него могут выступать микроконтроллеры, микропроцессорные системы, персональные компьютеры или специализированные ЭВМ, в зависимости от сложности ССД.[14]

Данный функциональный блок может выполнять широкий спектр задач, таких как:

·              преобразование полученной информации в вид, удобный для отображения на индикаторах и дисплеях;

·              цифровая обработка сигнала, усиление, фильтрация с применением БИХ, КИХ фильтров, преобразованием Фурье;

·              хранение данных во внутренней или внешней памяти;

·              передача данных по тому или иному интерфейсу.

. Цифро-аналоговые преобразователи

Цифро-аналоговый преобразователь (ЦАП) — устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал (ток, напряжение или заряд). Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами.

ЦАП применяется всегда, когда надо преобразовать сигнал из цифрового представления в аналоговое для дальнейшего отображения на дисплеях и анализа.

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать курсовую

.1 Наиболее общие типы ЦАП

Широтно-импульсный модулятор — простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi-аудиотехнике;

ЦАП передискретизации, такие как дельта-сигма-ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра верхних частот для шума квантования.

Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчетов в секунду, разрядность — до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот и улучшается подавление шума квантования;

ЦАП лестничного типа (цепная R-2R-схема). В R-2R-ЦАП значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R, называемой матрицей постоянного импеданса, которая имеет два вида включения: прямое — матрица токов и инверсное -матрица напряжений. Применение одинаковых резисторов позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. ЦАП типа R-2R позволяют отодвинуть ограничения по разрядности. С лазерной подгонкой плёночных резисторов, расположенных на одной подложке гибридной микросхемы, достигается точность 20-22 бита. Основное время на преобразование тратится в операционном усилителе, поэтому он должен иметь максимальное быстродействие. Быстродействие ЦАП единицы микросекунд и ниже (то есть наносекунды);[14]

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом.

.2 Характеристики ЦАП

Разрядность — количество различных уровней выходного сигнала, которые ЦАП может воспроизвести. Обычно задается в битах. Разрядность тесно связана с эффективной разрядностью (англ. ENOB, Effective Number of Bits), которая показывает реальное разрешение, достижимое на данном ЦАП.

Максимальная частота дискретизации — максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Найквиста — Шеннона (известной также как теорема Котельникова), для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не менее чем удвоенная максимальная частота в спектре сигнала. [14]

Например, для воспроизведения всего слышимого человеком звукового диапазона частот, спектр которого простирается до 20 кГц, необходимо, чтобы звуковой сигнал был дискретизован с частотой не менее 40 кГц. Стандарт Audio CD устанавливает частоту дискретизации звукового сигнала 44,1 кГц; для воспроизведения данного сигнала понадобится ЦАП, способный работать на этой частоте. В дешевых компьютерных звуковых картах частота дискретизации составляет 48 кГц. Сигналы, дискретизованные на других частотах, подвергаются передискретизации до 48 кГц, что частично ухудшает качество сигнала.

Монотонность — свойство ЦАП увеличивать аналоговый выходной сигнал при увеличении входного кода.+N (суммарные гармонические искажения + шум) — мера искажений и шума вносимых в сигнал ЦАПом. Выражается в процентах мощности гармоник и шума в выходном сигнале. Важный параметр при малосигнальных применениях ЦАП.[14]

Динамический диапазон — соотношение наибольшего и наименьшего сигналов, которые может воспроизвести ЦАП, выражается в децибелах. Данный параметр связан с разрядностью и шумовым порогом.

Статические характеристики:

·              DNL (дифференциальная нелинейность) — характеризует, насколько приращение аналогового сигнала, полученное при увеличении кода на 1 младший значащий разряд (МЗР), отличается от правильного значения;

·              INL (интегральная нелинейность) — характеризует, насколько передаточная характеристика ЦАП отличается от идеальной. Идеальная характеристика строго линейна; INL показывает, насколько напряжение на выходе ЦАП при заданном коде отстоит от линейной характеристики; выражается в МЗР;

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена курсовой

·              усиление;

·              смещение.

Частотные характеристики:

·              SNDR (отношение сигнал/шум+искажения) — характеризует в децибелах отношение мощности выходного сигнала к суммарной мощности шума и гармонических искажений;

·              HDi (коэффициент i-й гармоники) — характеризует отношение i-й гармоники к основной гармонике;

·              THD (коэффициент гармонических искажений) — отношение суммарной мощности всех гармоник (кроме первой) к мощности первой гармоники.

. Системы передачи данных. Режимы и принципы обмена, способы соединения. Метод приема-передачи

Передача данных — физический перенос данных (цифрового битового потока) в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу передачи данных, как правило, для последующей обработки средствами вычислительной техники.

Способ передачи информации:

·              параллельный;

·              последовательный;

·              параллельно — последовательный.

Цифровая последовательная передача — это последовательная отправка битов по одному проводу, частоте или оптическому пути. Этот механизм может использоваться на более дальних расстояниях, потому что легко может быть передана контрольная цифра или бит чётности.

В цифровой связи, параллельной передачей называется одновременная передача соответствующих элементов сигнала по двум или большему числу путей. Используя множество электрических проводов можно передавать несколько бит одновременно, что позволяет достичь более высоких скоростей передачи, чем при последовательной передаче.

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать курсовую

Принцип обмена информацией:

·              асинхронный;

·              синхронный.(англ. Asynchronous Transfer Mode — асинхронный способ передачи данных) — сетевая высокопроизводительная технология коммутации и мультиплексирования, основанная на передаче данных в виде ячеек (cell) фиксированного размера (53 байта), из которых 5 байтов используется под заголовок.

Синхронный принцип основывается на синхронизации по времени передающего и принимающего устройства. Стандарты этого принципа определяют характеристики цифровых сигналов, включая структуру фреймов (циклов), метод мультиплексирования, иерархию цифровых скоростей и кодовые шаблоны интерфейсов и т. д.

В отличие от синхронного способа передачи данных, ATM лучше приспособлен для предоставления услуг передачи данных с сильно различающимся или изменяющимся битрейтом.

Сеть ATM строится на основе соединенных друг с другом АТМ-коммутаторов. Допускается совместная передача различных видов информации, включая видео, голос.

Ячейки данных, используемые в ATM, меньше в сравнении с элементами данных, которые используются в других технологиях.

Небольшой, постоянный размер ячейки, используемый в ATM, позволяет:

·              Совместно передавать данные с различными классами требований к задержкам в сети, причем по каналам как с высокой, так и с низкой пропускной способностью;

·              Работать с постоянными и переменными потоками данных;

·              Интегрировать на одном канале любые виды информации: данные, голос, потоковое аудио- и видеовещание, телеметрия и т.п.;

·              Поддерживать соединения типа точка-точка, точка-многоточка и многоточка-многоточка.

Технология ATM предполагает межсетевое взаимодействие на трёх уровнях.

Для передачи данных от отправителя к получателю в сети ATM создаются виртуальные каналы, VC (англ. Virtual Circuit), которые бывают трёх видов:

·              постоянный виртуальный канал, PVC (Permanent Virtual Circuit), который создаётся между двумя точками и существует в течение длительного времени, даже в отсутствие данных для передачи;

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать курсовую

·              коммутируемый виртуальный канал, SVC (Switched Virtual Circuit), который создаётся между двумя точками непосредственно перед передачей данных и разрывается после окончания сеанса связи;

·              автоматически настраиваемый постоянный виртуальный канал, SPVC (Soft Permanent Virtual Circuit). Каналы SPVC по сути представляют собой каналы PVC, которые инициализируются по требованию в коммутаторах ATM. С точки зрения кажд

Средняя оценка 0 / 5. Количество оценок: 0

Поставьте оценку первым.

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше?

867

Закажите такую же работу

Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке