Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке

Научная статья на тему «Исследование трещиностойкости инженерных стальных конструкций нефтяного назначения»

Постановка проблемы и ее связь с научными и практическими задачами. Анализ состояния основного фонда нефтедобывающего комплекса Украины показывает, что одной из основной проблем подземного скважинного оборудования является его физический и моральный износ.

Решение этой важной практической проблемы сопряжено с огромными капиталовложениями и, по нашему мнению, в ближайшие годы невыполнимо.

Исследование промысловых данных показывает, что среди других видов аварий коррозионные повреждения (разгерметизация) обсадных и насосно-компрессорных колонн является наиболее распространенными и происходят в процессе освоения и эксплуатации скважин. Аварии с обсадными колоннами, в особенности при больших глубинах скважин, вызывают серьезные осложнения, снижают производственные показатели нефтяных компаний и отрицательно сказываются на себестоимости добываемой нефти.

Кроме аварий, связанных непосредственно с повреждениями самих труб, происходят аварии, вызванные коррозионно-механическими повреждениями колонн глубинно-насосных штанг (обрыв и падение штанговых колонн). Такие разрушения приводят к авариям с тяжелым исходом — падение колонн в скважину, если своевременно их не выявлять и не предупреждать.

Из практики известно, что добыча и транспортировка нефти неизбежно сопровождаются выпадением и накоплением в скважинном оборудовании и промысловых трубопроводах нефтяного шлама, что приводит к уменьшению эффективного диаметра насосно-компрессорных труб (НКТ) и затрудняет эксплуатацию нефтепроводов и резервуаров.

В связи с этим, проблема комплексного повышения служебного ресурса внутрискважинного нефтяного оборудования с целью обеспечения надежности его элементов остается чрезвычайно актуальной, а ее решение имеет важное народнохозяйственное значение.

Анализ исследований, изложенных в литературе. Анализ исследований отечественных [1, 2, 3, 5, 6, 8] и зарубежных [11—13] ученых, проведенных в последние годы, и многолетние собственные наблюдения авторов показывают, что по причине коррозионного воздействия агрессивной среды происходит до 60 … 75 % всех повреждений подземного внутрискважинного оборудования, т. е. коррозионные разрушения металла стали проблемой отраслевого масштаба. Это объясняется не только значительной наработкой оборудования, но и рядом факторов, усугубляющих эту проблему. Специфическим коррозионным и коррозионно-механическим повреждениям со стороны рабочей среды наиболее подвержены насосно-компрессорные и обсадные трубы (ОТ), глубинные насосные штанги (ГНШ) и корпуса скважинных насосов.

При этом в работах [8, 9] установлено, что наиболее активными с точки зрения образования продуктов коррозии (окислов и сульфидов железа и др.) являются те зоны контакта металла труб с пластовой жидкостью, которые содержат сероводород и углекислый газ. Кроме того, из литературы [5, 8] и практики известно, что важная роль в коррозионных разрушениях внутрискважинного оборудования отводится и сульфатвосстанавливающим бактериям, которые являются одновременно инициаторами и катализаторами электрохимических процессов коррозии металла. В результате микробно-индуцированной коррозии происходит деградация внутрискважинного оборудования, особенно в процессе длительной эксплуатации в коррозионно-активных зонах нефтяных месторождений Украины, для изучения особенностей которой необходимо проведение дополнительных исследований.

Целью работы является исследование трещиностойкости стального нефтедобывающего оборудования в условиях непосредственного контакта с коррозионно-активными водонефтегазовыми средами.

Методы исследования. Комплекс исследований поврежденного металла внутрискважинного оборудования, взятого для изучения из разных зон (глубин) нефтедобывающих скважин, включал наряду со стандартными, специальные виды исследований: различные варианты рентгеноспектрального анализа с использованием растрового электронного микроскопа JSM-35CF (фирма «Джеол», Япония), «Camebax-МВХ» фирмы «Riber» (Франция), SEM-515 с микроанализатором «Link» фирмы «Philips».

Состав неметаллических включении определяли на энергодисперсионном спектрометре «Link — 860» (фирма «Linko», Великобритания). Определение объемной доли и размеров неметаллических включений проводилось на количественном телевизионном микроскопе «Квантимет-720» (фирма «Металс рисерч», Великобритания).

Кроме этого определяли остаточное содержание и характер распределения в металле водорода, серы и кислорода: а) методом локального масс-спектрального анализа (ЛМСА) с лазерным микрозондом, б) методом плавки проб металла в потоке несущего газа с использованием установок фирмы «Leco».

Результаты исследований и их обсуждение. Известно, что скорость разрушения металла зависит от концентрации и парциального давления сероводорода, общего давления, температуры, рН, минерализации, скорости движения коррозионно-агрессивной среды. Развитие сульфидной коррозии возможно уже при концентрации сероводорода 0,001 %.

Коррозионные процессы, протекающие в присутствии сульфатвосстанавливающих бактерий (СВБ), характеризуются отличительными признаками: на металлической поверхности появляются коррозионные отложения в виде темно-коричневой корки и рыхлых бугорков. Они состоят из сульфидов, карбонатов и гидратов оксида железа и включают многочисленные колонии СВБ. Под слоем отложений быстро развиваются коррозионные поражения в виде питтингов (точечная коррозия), скорость образования которых весьма велика (например, известны случаи, когда стенка толщиной 5,5 мм была поражена питтинговой коррозией в течение 9 мec.).

Данные табл. 1, взятые для месторождений Западной Сибири, подтверждают значительную роль сероводородной коррозии в разрушении и аварийных отказах подземного скважинного оборудования. Это подтверждается результатами химического анализа продуктов анаэробной коррозии стали, в которых присутствует наряду с гидратами закиси и оксида железа в большом количестве сернистое железо.

Таблица 1

Нужна помощь в написании статьи?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Подробнее

Роль сероводородной коррозии в разрушении и аварийных отказах подземного скважинного оборудования месторождений Западной Сибири 

 

Установлено [3], что некоторые сульфидные включения в низколегированных сталях действуют как инициаторы образования коррозионных трещин, тогда как другие не влияют на этот процесс. Возникновение трещин связано в основном с расположением определенных неметаллических включений, а по мере своего роста трещины становятся межзеренными.

Полученные металлографические данные использовали в качестве параметров для сопоставления исходного состояния сталей внутрискважинного оборудования с их состаренным состоянием, а также для сопоставления структурных особенностей разрушения образцов, характера распространения усталостных трещин в сталях в исходном и состаренном состояниях. Коррозионно-механические характеристики трубных сталей нефтяного сортамента в значительной степени зависят от состава, формы, размеров и количества карбидных фаз [1—3].

Установлено [3, 5, 8], что в стенке трубы напряжения за счет колебания внутреннего давления перекачиваемого продукта меняются от 0,5—0,7 до 5—6 МПа и достигают максимума 150—200 МПа или 0,4—0,5 предела текучести в зависимости от толщины стенки.

С помощью рентгеноструктурных исследований получены данные, свидетельствующие о распаде цементита (Fe3С) в металле труб НКТ и ОТ в процессе эксплуатации (табл. 2).

Таблица 2

Данные распада цементита (Fe3С) в металле труб НКТ и ОТ в процессе эксплуатации 

Характеристики, химический состав и механические свойства труб и штанг приведены в табл. 3.

Таблица 3

Характеристики, химический состав и механические свойства труб и штанг 

Как видно из приведенных данных, в процессе эксплуатации в сталях скважинного оборудования происходит не только перераспределение атомов углерода и азота, но и распад цементита, что хорошо согласуется с результатами работы [3].

Специальными экспериментами, выполненными совместно с сотрудниками ИЭС им. Е. О. Патона, установлено, что с увеличением срока эксплуатации скважинного подземного оборудования существенно уменьшается содержание цементита (Fе3С) в металле. При этом наиболее сильно уменьшение доли цементита в сталях труб ОТ и НКТ происходит после 10-летнего срока эксплуатации.

Существенное изменение происходит и в структуре этих сталей. Так, в процессе длительной нагрузки значительно изменяется строение перлита: цементитные пластины теряют ориентировку в пределах перлитной колонии, дробятся, приобретают округлую форму. Перлитные участки приобретают структуру, подобную зернистой.

Под действием переменных напряжений в кристаллических зернах происходит генерация дополнительных дислокаций как в ферритных, так и перлитных зернах [3]. Движущиеся дислокации перерезают цементитные пластинки, унося при этом часть атомов углерода. Фрагментация перлитных зерен приводит к изменению морфологии цементитных пластин, в результате чего часть цементита, у которой частицы меньше критической величины, растворяется, а часть — измельчается так, что перестает давать самостоятельные рентгеновские рефлексы. Кроме того, атомы углерода, «освободившиеся» в результате распада цементита, скапливаются в полосах скольжения, уходят в твердый раствор, скапливаются на границах зерен и микротрещинах, где образуются зародыши новых карбидных частиц.

Эти процессы, как правило, вызывают локальное охрупчивание металла внутрискважинного оборудования, а при благоприятных условиях (знакопеременных циклических нагрузках) вблизи этих частиц образуются микропоры, коагуляция которых приводит к образованию трещин.

С использованием методов рентгеноструктурного анализа измерены параметры кристаллической решетки a-матрицы, дана оценка уровня упругих искажений решетки (микронапряжений искажения), а также распределения углерода в феррите и цементите (табл. 4) в сталях труб ОТ и НКТ.

Таблица 4

Параметры кристаллической решетки a-матрицы, оценка уровня упругих искажений решетки и распределения углерода в феррите и цементите в сталях труб ОТ и НКТ