Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке

Реферат на тему «История открытия и развитие исследований соединений со структурой слоистого перовскита»

Характерной чертой структуры всех слоистых перовскитов является наличие m октаэдрических слоев, причем в зависимости от состава m может принанимать значения от 1 до 9.

1. Три семейства слоистых перовскитов

Первые слоистые перовскиты были открыты шведским химиком Б. Ауривиллиусом в 1949 г[9], и в его честь были названы фазами Ауривиллиуса.

Типичный пример фазы Ауривиллиуса — соединение Bi4Ti3O12

Химическую формулу подобных соединений можно записать в общем виде Аm-1Bi2BmO3m+3, где m обычно варьируется от 1 до 5. В качестве А чаще всего представлены одно-, двух- и трехвалентные катионы или их комбинации с координационным числом больше 6, а в качестве В обычно выступают переходные элементы с октаэдрической координацией. Висмут-содержащие ферроэлектрики со слоистой структурой характеризуются низкой диэлектрической проницаемостью, высокими температурами Кюри, низкими температурными коэффициентами резонансной частоты, сильно анизотропными электромеханическими коэффициентами связи и низкими скоростями старения.

Структуры данных стехиометрических соединений построены из пакетов и блоков.

Пакет — это элемент слоистой структуры, унаследованный от перовскита и содержащий максимальное число слоев октаэдров или их остатков, связанных вершинами. При заполнении вакансий атомами его мысленно можно достроить до m слоев структуры типа перовскита. Для перовскитов известно четыре вида пакетов: 1) из октаэдров AХ6, 2) пирамид AХ5, 3) квадратных сеток AХ4, 4) гантелей AХ2.

Блоки — промежуточные слои между двумя пакетами. В ряде случаев блоки можно рассматривать элементами других структурных типов, а иногда результатом вырождения перовскитной ячейки. Ассортимент блоков в известных соединениях не превышает двадцати.

Пакеты в висмут-содержащих ферроэлектриках со слоистой структурой состоят из m слоев анионных октаэдров и при m→∞ подобны “классическому” кубическому перовскиту. Блоки можно рассматривать как фрагменты структуры кубического BiF3.

Правильная структура кристаллов фаз Ауривиллиуса, в силу своего слоистого характера, имеет тетрагональную сингонию с пространственной группой I4/mmm. Однако множество соединений данного семейства имеют более низкую симметрию элементарной ячейки вследствие ротационного искажения структуры. Тем не менее, большинство искаженных структур при нагревании претерпевают фазовые переходы, в результате которых, как правило, наблюдается увеличение симметрии элементарной ячейки и стремление фазы Ауривиллиуса к своему “идеальному” строению (рис. III).

После открытия сегнетоэлектрических свойств даже у простейшего представителя семейства с m=1 Bi2WO6, началось активное исследование фазообразования и свойств слоистых перовскитов, и уже в 1957 г. двое британских химиков — Руддлесден и Поппер открыли новый тип фаз слоистых перовскитов с общей формулой , A’2[Am-2BmO3m+1], позже названных в их честь фазами Руддлесдена — Поппера[10]. Структура этих фаз также представляла собой чередование пакетов откаэдров и блоков (рис. IV), однако, в отличие от фаз Ауривиллиуса, вместо трехмерных слоев [Bi2O2]2+, между пакетами размещаются катионы щелочных и щелочноземельных металлов в количестве, достаточном для компенсации -2 заряда пакетов. Такая особенность позволила выделить новый класс соединений с новыми свойствами и применениями, по сути не изменяя общий мотив структуры. Следующей вехой в исследованиях слоистых перовскитов стал открытие французским химиком Дионом в 1981 соединений слоистых перовскитов с общей формулой A’[Am-1BmO3m+1], имеющих в межпакетном пространстве лишь один катион щелочного металла (рис. V)[11]. Это стало возможным благодаря смене катионов в самом пакете так, что общий заряд пакета становился равным -1. Такие соединения впоследствии были названы фазами Диона — Якобсона.

2. Реакции слоистых перовскитов

Открытие фаз Диона — Якобсона дало громадный толчок в развитии исследований фаз слоистых перовскитов благодаря подвижности иона щелочного металла в структуре. Это сделало возможными огромный пласт топохимических реакций «мягкой химии» в области слоистых перовскитов. Учеными Шааком и Малуком [12] и Гопалакришнаном [13] были разработаны реакции ионного обмена (рис. VI), расслоения, внедрения, топохимической конденсации, а также превращения всех трех семейств слоистых перовскитов друг в друга (рис. VII). Метод «мягкой химии» предлагает потенциально мощную альтернативу для контроля термодинамически недоступных структурных особенностей на кинетическом уровне. В последние годы, перовскиты стали целью многих низкотемпературных химических трансформаций, и результатом этого стала подробная разработанная система твердофазных реакций. Межслойные катионы или структурные единицы слоистых перовскитов могут быть заменены при низких температурах, что облегчает их последующее преобразование в новые фазы, которые могут быть как слоистыми, так и трехмерно связанными. Используя эти реакции, стало возможным рационально разрабатывать множество интересных структур, и воплощать их в продукт — перовскитную фазу, используя серию низкотемпературных реакций.

В ходе «мягкой» химической реакции большинство связей твердого прекурсора остаются нетронутыми, так что все химические реакции происходят в определенных реакционных центрах кристалла. Многие такие реакции включают ионный обмен слабо связанных катионов и анионов решетки. Распространенный пример такого обмена наблюдается в пористой цеолитной структуре. Другой подход — перевод слоистой структуры в фазу с трехмерным каркасом с использованием реакции топохимической конденсации. В этом случае, крайние лиганды исчезают вдоль одной из кристаллографических плоскостей (например, убирают O2-, который в атмосфере H2 дает H2O), что служит «молнией», «застегивающей» связи между параллельными плоскостями.

Уили и коллеги в 2002 г. получили новую серию сращенных фаз перовскит/галогенид металла замещением межслойных щелочных катионов различных фаз Диона — Якобсона на CuX+ (X = Cl, Br) реакцией с CuX2[14]. Типичным примером является двухслойная фаза Диона — Якобсона RbLaNb2O7, которая реагирует с CuCl2 с образованием (CuCl)LaNb2O7 и RbCl; последний может быть отмыт. (CuCl)LaNb2O7 и родственные фазы являются интересными слоистыми перовскитами, так они содержат сеть связанных CuCl+ между перовскитными слоями, что может привести к сверхпроводящим свойствам. Методы синтеза были не так давно обобщены для получения большого разнообразия соединений. CuX+ вступает в реакцию обмена со многими межслойными катионами, такими как Rb+, K+, H+, Li+ и NH4+, и эта реакция также работает для многих фаз Диона — Якобсона, включая RbCa2Nb3O10 и RbLa2Ti2NbO10.

Другой подход к получению новых перовскитов со сложными «собранными вручную» последовательностями блоков — это использование расслоения и пересборки «слой за слоем» слоистых перовскитов в виде тонких пленок. Реакцией с избытком органического основания, такого как тетра-(н-бутил)аммония гидроксид (TBA+OH-), протонированная форма многих слоистых перовскитов расслаивается на коллоидные листы. Такие коллоидные растворы сами по себе являются хорошими фотокатализаторами, и также могут использованы в качестве исходного вещества для синтеза новых перовскитных фаз.

6. Вывод

Из вышесказанного можно сделать вывод, что несмотря на многообразие соединений слоистых перовскитов и их реакций, общий теоретический системный подход к их изучению отсутствует. Этим объясняется неравномерность открытия новых фаз слоистых перовскитов и многократное их «переоткрытие», нецелесообразное изучение «неудачных» соединений. Такие препятствия напрямую связаны с отсутствием общей теории химии твердого тела и, как следствие, способности точно теоретически предсказывать и рассчитывать состав и свойства будущих соединений. Разработка подобного теоретического аппарата несомненно приведет к быстрому появлению новых материалов на основе слоистых перовскитов с удивительными свойствами.

Список литературы

1. Вест А. Р. Химия твердого тела. Теория и приложения. В 2-ух частях. Часть 1. Москва. Издательство «Мир». 1989. с. 8-12

2. Rao, C. N. R., Gopalakrishnan, J. In New Directions in Solid State Chemistry, 2nd ed.; Cambridge University Press: Cambridge, 1997. Reviews Chem. Mater., Vol. 14, No. 4, 2002 1469

3. Braga, D., Grepioni, F., Desiraju, G. R. Chem. Rev. 1998, 98, 1375

4. Li, H. L., Laine, A., O’Keeffe, M., Yaghi, O. M. Science 1999, 283, 1145

5. Yaghi, O. M., Li, H., Groy, T. L. J. Am. Chem. Soc. 1996, 118, 9096

6. Tournoux, M.; Marchand, R., Brohan, L.Prog. Inorg. Solid State Chem. 1986, 17, 33

7. Aurivillius B. Ark. Kemi 1949, 1, 463

8. Ruddlesden, S. N., Popper, P. Acta Crystallogr. 1957, 10, 538. 11. Dion, M.; Ganne, M., Tournoux, M. Mater. Res. Bull. 1981, 16, 1429.

9. Schaak, R. E., Mallouk, T. E. J. Solid State Chem. 2001, 161, 225

10. Gopalakrishnan, J., Uma, S., Bhat, V. Chem. Mater. 1993, 5, 132.

11. Kodenkandath, T. A., Lalena, J. N.; Zhou, W. L., Carpenter, E. E., Sangregorio, C., Falster, A. U., Simons, W. B., Jr., O’Connor,C. J., Wiley, J. B. J. Am. Chem. Soc. 1999, 121, 10743

12. Fang, M., Kim, H.-N., Saupe, G. B., Miwa, T., Fujishima, A., Mallouk, T. E. Chem. Mater. 1999, 11, 1526

Средняя оценка 0 / 5. Количество оценок: 0

Поставьте оценку первым.

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше?

691

Закажите такую же работу

Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке