Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке

Реферат на тему «Социально-биологические основы физической культуры и спорта»

Функциональные системы организма — динамические, саморегулирующиеся центрально-периферические организации, обеспечивающие своей деятельностью полезные для метаболизма организма и его приспособления к окружающей среде результаты.

Содержание

Введение
Глава 1. Особенности и принципы функциональных систем
1.1. Закономерности развития физиологических систем организма человека
Глава 2. Понятие о биологических ритмах и биоритмологии
2.1. Физиологические и экологические ритмы
2.2. Циркадианные ритмы
2.3. Биоримологическая адаптация
2.4. Теория трех ритмов
Глава 3. Гипокинезия и гиподинамия
Заключение
Список использованных источников

Глава 1. Особенности и принципы функциональных систем

Функциональные системы организма — динамические, саморегулирующиеся центрально-периферические организации, обеспечивающие своей деятельностью полезные для метаболизма организма и его приспособления к окружающей среде результаты.

Объединение всех узловых механизмов и функциональных систем определяет полезный для организма результат деятельности. Любое изменение результата, так же как и его оптимальное состояние, постоянно воспринимается соответствующими рецепторами. Сигнализация (обратная афферентация), возникающая в рецепторах, поступает в соответствующие нервные центры и избирательно вовлекает в функциональные системы элементы различных уровней для построения исполнительной деятельности, направленной на восстановление потребного для организма результата.

Исходной стадией системной архитектоники целенаправленного поведенческого акта любой степени сложности является стадия афферентного синтеза. На этой стадии в центральной нервной системе осуществляется синтез возбуждений, обусловленных внутренней метаболической потребностью, обстановочной и пусковой афферентацией с постоянным использованием генетических и индивидуально приобретённых механизмов памяти. Стадия афферентного синтеза заканчивается стадией принятия решения, которая по своей физиологической сущности означает ограничение степеней свободы поведения и выбор какой-либо единственной линии поведения, направленного на удовлетворение сформированной на стадии афферентного синтеза ведущей потребности организма.

Следующей стадией в динамике последовательного развёртывания поведенческого акта, которая осуществляется одновременно с формированием целенаправленного действия, является стадия предвидения потребного результата — акцептор результата действия; поведенческий акт заканчивается, если достигнут полноценный результат, удовлетворяющий исходную потребность организма. В противном случае, если параметры достигнутых результатов не соответствуют свойствам акцептора результата действия, возникает ориентировочно-исследовательская реакция, перестраивается стадия афферентного синтеза, принимается новое решение и поведенческий акт осуществляется в новом, необходимом для удовлетворения исходной потребности направлении.

Одним из ведущих принципов построения функциональных систем организма является так называемый голографический принцип. Каждый элемент, включённый в деятельность функциональных систем, отражает в своей активности состояние её конечного результата. Иными словами, именно в деятельности отдельных элементов функциональных систем отражается исходная потребность организма и её удовлетворение.

Взаимодействие отдельных функциональных систем в целом организме и в популяциях строится на основе принципов доминирования и многосвязного регулирования по конечным результатам. Доминирование отдельных функциональных систем в организме определяется механизмами доминанты и означает, что в каждый данный момент времени деятельностью организма завладевает ведущая функциональная система, обеспечивающая удовлетворение главной для выживаемости, продления рода или общественного престижа потребности.

Принцип многосвязного регулирования означает взаимодействие разных функциональных систем по их конечным результатам, что нередко определяет их обобщённую деятельность в интересах целого организма. Примером такой деятельности различных функциональных систем является гомеостаз.

В целостном организме проявляется ещё один принцип динамической организации функциональных систем — принцип последовательного квантования жизнедеятельности. Процессы гомеостаза и поведения в их континууме расчленяются деятельностью функциональных систем на дискретные элементы (кванты), каждый из которых заканчивается полезным для организма результатом.

Функциональные системы — объективно существующие организации, определяющие интегративные целостные функции организма, взаимодействие организмов между собой и с окружающей средой. За счёт саморегуляции функциональных систем обладают способностью к самоорганизации.

Целостный организм в каждый данный момент времени представляет слаженное взаимодействие — интеграцию по горизонтали и вертикали различных функциональных систем на основе их иерархического, многосвязного одновременного и последовательного взаимодействия, что в конечном счёте определяет нормальное течение физиологических процессов. Нарушение этой интеграции, если оно не компенсируется специальными механизмами, ведёт к заболеванию и гибели организма.

1.1. Закономерности развития физиологических систем организма человека

Важность выявления закономерностей развития организма ребёнка и особенностей функционирования его физиологических систем на разных этапах онтогенеза для охраны здоровья и разработки адекватных возрасту педагогических технологий определила поиск оптимальных путей изучения физиологии ребёнка и тех механизмов, которые обеспечивают адаптивный приспособительный характер развития на каждом этапе онтогенеза.

Согласно современным представлениям, начало которым было положено ещё работами А.Н. Северцова в 1939 г., все функции складываются и претерпевают изменения при тесном взаимодействии организма и среды. В соответствии с этим представлением адаптивный характер функционирования организма в различные возрастные периоды определяется двумя важнейшими факторами: морфофункциональной зрелостью физиологических систем и адекватностью воздействующих средовых факторов функциональным возможностям организма.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать реферат

Традиционным для отечественной физиологии (И.М. Сеченов, И.П. Павлов, А.А. Ухтомский, Н.А. Бернштейн. П.К. Анохин и др.) является системный принцип организации адаптивного реагирования на факторы внешней среды. Этот принцип, рассматриваемый как базовый механизм жизнедеятельности организма, подразумевает, что все виды приспособительной деятельности физиологических систем и целостного организма осуществляются посредством иерархически организованных динамических объединений, включающих отдельные элементы одного или разных органов (физиологических систем).

Важнейший вклад в изучение принципов динамической системной организации приспособительных действий организма внесли исследования А.А. Ухтомского, выдвинувшего принцип доминанты как функционального рабочего органа, определяющего адекватное реагирование организма на внешние воздействия. Доминанта, по А.А. Ухтомскому, представляет собой объединённую единством действия констелляцию нервных центров, элементы которой могут быть топографически достаточно удалены друг от друга и при этом со настроены на единый ритм работы.

Касаясь механизма, лежащего в основе доминанты, А.А. Ухтомский обращал внимание на тот факт, что нормальная деятельность опирается «не на раз и навсегда определённую и поэтапную функциональную статику различных фокусов как носителей отдельных функций, а на непрестанную интерцентральную динамику возбуждений на разных уровнях: кортикальном, субкортикальном, медуллярном, спинальном». Тем самым подчёркивалась пластичность, значимость пространственно-временного фактора в организации функциональных объединений, обеспечивающих адаптивные реакции организма.

Идеи А.А. Ухтомского о функционально-пластичных системах организации деятельности получили своё развитие в трудах Н.А. Бернштейна. Изучая физиологию движений и механизмы формирования двигательного навыка, Н.А. Бернштейн уделял внимание не только согласованной работе нервных центров, но и явлениям, происходящим на периферии тела — в рабочих точках. Это позволило ему ещё в 1935 г. сформулировать положение о том, что приспособительный эффект действия может быть достигнут только при наличии в центральной нервной системе в какой-то закодированной форме конечного результата — «модели потребного будущего». В процессе сенсорного коррегирования путём обратных связей, поступающих из работающих органов, создаётся возможность сличения информации об уже осуществлённой деятельности с этой моделью.

Высказанное Н.А. Бернштейном положение о значении обратных связей в достижении приспособительных реакций имело первостепенное значение в понимании механизмов регуляции адаптивного функционирования организма и организации поведения.

Классическое представление о разомкнутой рефлекторной дуге уступило место представлению о замкнутом контуре регулирования. Очень важным положением, разработанным Н.А. Бернштейн, является установленная им высокая пластичность системы — возможность достижения одного и того же результата в соответствии с «моделью потребного будущего» при неоднозначном пути достижения этого результата в зависимости от конкретных условий.

Развивая представление о функциональной системе как объединении, обеспечивающем организацию адаптивного реагирования, П.К. Анохин в качестве системообразующего фактора, создающего определённое упорядоченное взаимодействие отдельных элементов системы, рассматривал полезный результат действия. «Именно полезный результат составляет операциональный фактор, который способствует тому, что система… может полностью реорганизовать расположение своих частей в пространстве и во времени, что и обеспечивает необходимый в данной ситуации приспособительный результат» (Анохин).

Первостепенное значение для понимания механизмов, обеспечивающих взаимодействие отдельных элементов системы, имеет положение, развиваемое Н.П. Бехтеревой и её сотрудниками, о наличии двух систем связей: жёстких (врождённых) и гибких, пластичных. Последние наиболее важны для организации динамических функциональных объединений и обеспечения конкретных приспособительных реакций в реальных условиях деятельности.

Одной из основных характеристик системного обеспечения адаптивных реакций является иерархичность их организации (Винер). Иерархия сочетает в себе принцип автономности с принципом соподчинения. Наряду с гибкостью и надёжностью для иерархически организованных систем характерна высокая энергетическая структурная и информационная экономичность. Отдельные уровни могут состоять из блоков, осуществляющих простые специализированные операции и передающих обработанную информацию на более высокие уровни системы, которые осуществляют более сложные операции и вместе с тем оказывают регулирующее влияние на более низкие уровни.

Иерархичность организации, основывающаяся на тесном взаимодействии элементов как на одном уровне, так и на разных уровнях систем, определяет высокую устойчивость и динамичность осуществляемых процессов.

В ходе эволюции формирование иерархически организованных систем в онтогенезе связано с прогрессивным усложнением и наслаиванием друг на друга уровней регулирования, обеспечивающих совершенствование адаптационных процессов (Василевский). Можно полагать, что те же закономерности имеют место и в онтогенезе.

Очевидна значимость системного подхода к изучению функциональных свойств развивающегося организма, его способности к формированию оптимального для каждого возраста адаптивного реагирования, саморегуляции, способности к активному целесообразному поиску информации, формированию планов и деятельности.

Важнейшее значение для понимания того, как формируются и организуются функциональные системы в процессе индивидуального развития, имеет сформулированный А.Н. Северцовым принцип гетерохронии развития органов и систем, детально разработанный П.К. Анохиным в теории системогенеза. Эта теория базируется на экспериментальных исследованиях раннего онтогенеза, выявивших постепенное и неравномерное созревание отдельных элементов каждой структуры или органа, которые консолидируются с элементами других органов, задействованных в реализации данной функции, и, интегрируясь в единую функциональную систему, осуществляют принцип «минимального обеспечения» целостной функции.

Разные функциональные системы в зависимости от их значимости в обеспечении жизненно важных функций созревают в разные сроки постнатальной жизни — это гетерохрония развития. Она обеспечивает высокую приспособляемость организма на каждом этапе онтогенеза, отражая надёжность функционирования биологических систем. Надёжность функционирования биологических систем, согласно концепции А.А. Маркосяна, является одним из общих принципов индивидуального развития. Она базируется на таких свойствах живой системы, как избыточность ее элементов, их дублирование и взаимозаменяемость, быстрота возврата к относительному постоянству и динамичность отдельных звеньев системы.

На примере формирования системы восприятия информации установлена общая закономерность обеспечения надёжности адаптивного функционирования системы. Выделены три функционально различных этапа её организации:

1-й этап (период новорожденности) — функционирование наиболее рано созревающего блока системы, обеспечивающего возможность реагирования по принципу «стимул — реакция»;

2-й этап (первые годы жизни) — генерализованное однотипное вовлечение элементов более высокого уровня системы, надёжность системы обеспечивается дублированием ее элементов;

3-й этап (наблюдается с предшкольного возраста) — иерархически организованная многоуровневая система регулирования обеспечивает возможность специализированного вовлечения элементов разного уровня в обработку информации и организацию деятельности.

В ходе онтогенеза по мере совершенствования центральных механизмов регуляции и контроля возрастает пластичность динамического взаимодействия элементов системы; избирательные функциональные констелляции формируются в соответствии с конкретной ситуацией и поставленной задачей. Это обусловливает совершенствование адаптивных реакций развивающегося организма в процессе усложнения его контактов с внешней средой и приспособительный характер функционирования на каждом этапе онтогенеза.

Из изложенного выше видно, что отдельные этапы развития характеризуются как особенностями морфофункциональной зрелости отдельных органов и систем, так и различием механизмов, определяющих специфику взаимодействия организма и внешней среды.

Необходимость конкретной характеристики отдельных этапов развития, учитывающей оба эти фактора, ставит вопрос о том, что рассматривать в качестве возрастной нормы для каждого из этапов.

В течение длительного времени возрастная норма рассматривалась как совокупность среднестатистических параметров, характеризующих морфофункциональные особенности организма. Такое представление о норме уходит своими корнями в те времена, когда практические потребности определяли необходимость выделить некоторые средние стандарты, позволяющие выявить отклонения развития. Несомненно, что на определённом этапе развития биологии и медицины подобный подход сыграл прогрессивную роль, позволив определить среднестатистические параметры морфофункциональных особенностей развивающегося организма; да и в настоящее время он позволяет решать ряд практических задач (например, при исчислении стандартов физического развития, нормировании воздействия факторов внешней среды и т.п.). Однако такое представление о возрастной норме, абсолютизирующее количественную оценку морфофункциональной зрелости организма на разных этапах онтогенеза, не отражает сущности возрастных преобразований, определяющих адаптивную направленность развития организма и его взаимоотношений с внешней средой. Совершенно очевидно, что если качественная специфика функционирования физиологических систем на отдельных этапах развития остаётся неучтённой, то понятие возрастной нормы теряет своё содержание, оно перестаёт отражать реальные функциональные возможности организма в определённые возрастные периоды.

Глава 2. Понятие о биологических ритмах и биоритмологии

Биологические ритмы — это периодически повторяющиеся изменения интенсивности и характера процессов жизнедеятельности биологических систем.

Биологические ритмы или биоритмы -это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передаётся по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, в целых организмах и в популяциях.

Согласно одному из основных принципов материалистического естествознания — принципу единства организма и среды -организм не может существовать без внешней среды. Но внешняя среда, все сферы мировоздания охвачены колебательными ритмическими движениями. Не удивительно поэтому, что одним из неотъемлемых свойств живого является ритмичность всех процессов. «Весь растительный и животный мир, а с ним и человек, извечно и непрестанно испытывает на себе ритмические воздействия внешнего физического мира и извечно отвечает на биение мирового пульса ритмическими пульсирующими реакциями»: писал русский социолог П. Я. Соколов.

Учение о биологических ритмах в узком смысле получило название биоритмологии, которая входит в более широкую дисциплину- хронобиологию.

Выделим следующие важные достижения хронобиологии:

  1. Биологические ритмы обнаружены на всех уровнях организации живой природы — от одноклеточных до биосферы. Это свидетельствует о том, что биоритмика — одно из наиболее общих свойств живых систем.
  2. Биологические ритмы признаны важнейшим механизмом регуляции функций организма, обеспечивающим гомеостаз, динамическое равновесие и процессы адаптации в биологических системах.
  3. Установлено, что биологические ритмы, с одной стороны, имеют эндогенную природу и генетическую регуляцию, с другой, их осуществление тесно связано с модифицирующим фактором внешней среды, так называемых датчиков времени. Эта связь в основе единства организма со средой во многом определяет экологические закономерности.
  4. Сформулированы положения о временной организации живых систем, в том числе — человека -одним из основных принципов биологической организации. Развитие этих положений очень важно для анализа патологических состояний живых систем.
  5. Обнаружены биологические ритмы чувствительности организмов к действию факторов химической (среди них лекарственные средства) и физической природы. Это стало основой для развития хронофармакологии, т. е. способов применения лекарств с учетом зависимости их действия от фаз биологических ритмов функционирования организма и от состояния его временной организации, изменяющейся при развитии болезни.
  6. Закономерности биологических ритмов учитывают при профилактике, диагностике и лечении заболеваний.

2.1. Физиологические и экологические ритмы

Биоритмы подразделяются на физиологические и экологические. Физиологические ритмы, как правило, имеют периоды от долей секунды до нескольких минут. Это, например, ритмы давления, биения сердца и артериального давления. Имеются данные о влиянии, например, магнитного поля Земли на период и амплитуду энцефалограммы человека.

Экологические ритмы по длительности совпадают с каким-либо естественным ритмом окружающей среды. К ним относятся суточные, сезонные (годовые), приливные и лунные ритмы. Благодаря экологическим ритмам, организм ориентируется во времени и заранее готовится к ожидаемым условиям существования. Так, некоторые цветки раскрываются незадолго до рассвета, как будто зная, что скоро взойдёт солнце. Многие животные ещё до наступления холодов впадают в зимнюю спячку или мигрируют. Таким образом, экологические ритмы служат организму как биологические часы.

Ритм — это универсальное свойство живых систем. Процессы роста и развития организма имеют ритмический характер. Ритмическим изменениям могут быть подвержены различные показатели структур биологических объектов: ориентация молекул, третичная молекулярная структура, тип кристаллизации, форма роста, концентрация ионов и т. д. Установлена зависимость суточной периодики, присущей растениям, от фазы их развития. В коре молодых побегов яблони был выявлен суточный ритм содержания биологически активного вещества флоридзина, характеристики которого менялись соответственно фазам цветения, интенсивного роста побегов и т. д. Одно из наиболее интересных проявлений биологического измерения времени-суточная периодичность открывания и закрывания цветков и растений. Каждое растение «засыпает» и «просыпается» в строго определённое время суток. Рано утром (в 4 часа) раскрывают свои цветки цикорий и шиповник, в 5 часов- мак, в 6 часов — одуванчик, полевая гвоздика, в 7 часов — колокольчик, огородный картофель, в 8 часов бархатцы и вьюнки, в 9-10 часов -ноготки, мать-и-мачеха. Существуют и цветы, раскрывающие свои венчики ночью. В 20 часов раскрываются цветки душистого табака, а в 21 час-горицвета и ночной фиалки. Так же в строго определённое время и закрываются цветки: в полдень- осот полевой, в 13-14 часов — картофель, в 14-15 часов -одуванчик, в 15-16 часов — мак, в 16-17 часов -ноготки, в 17-18 часов мать-и-мачеха, в 18-19 часов — лютик, в 19-20 часов -шиповник. Раскрытие и закрытие цветков зависит и от многих условий, например, от географического положения местности или времени восхода и заката солнца. Существуют ритмические изменения чувствительности организма к повреждающим факторам внешней среды. В опытах на животных было установлено, что чувствительность к химическим и лучевым поражениям колеблется в течение суток очень заметно: при одной и той же дозе смертность мышей в зависимости от времени суток варьировала от 0 до 10 % .

Важнейшим внешним фактором, влияющим на ритмы организма, является фотопериодичность. У высших животных предполагается существование двух способов фотопериодической регуляции биологических ритмов: через органы зрения и далее через ритм двигательной активности организма и путём экстрасенсорного восприятия света. Существует несколько концепций эндогенного регулирования биологических ритмов: генетическая регуляция, регуляция с участием клеточных мембран. Большинство учёных склоняются к мнению о полигенном контроле над ритмами. Известно, что в регуляции биологических ритмов принимают участие не только ядро, но и цитоплазма клетки.

2.2. Циркадианные ритмы

Центральное место среди ритмических процессов занимает циркадианный ритм, имеющий наибольшее значение для организма. Понятие циркадианного (околосуточного) ритма ввёл в 1959 году Халберг. Циркадианный ритм является видоизменением суточного ритма с периодом 24 часа, протекает в константных условиях и принадлежит к свободно текущим ритмам. Это ритмы с не навязанным внешними условиями периодом. Они врождённые, эндогенные, т. е. обусловлены свойствами самого организма. Период циркадианных ритмов длится у растений 23-28 часов, у животных 23-25 часов. Поскольку организмы обычно находятся в среде с циклическими изменениями её условий, то ритмы организмов затягиваются этими изменениями и становятся суточными.

По мнению Симакова, часовым механизмом в ядре служит ядерная оболочка. Такой вывод он сделал на основе опытов, проведённых с бактериями, у которых не было обнаружено циркадианных ритмов. Околосуточный ритм и есть то общее для самых разных клеток, тканей и органов, что объединяет их в единую, координированную во времени живую систему. Иными словами, подчинение всех проявлений жизнедеятельности циркадианному ритму выступает значительным фактором целостности организма.

Циркадианные ритмы обнаружены у всех представителей животного царства и на всех уровнях организации-от клеточного давления до межличностных отношений. В многочисленных опытах на животных установлено наличие циркадианных ритмов двигательной активности, температуры тела и кожи, частоты пульса и дыхания, кровяного давления и диуреза. Суточным колебаниям оказались подвержены содержания различных веществ в тканях и органах, например, глюкозы, натрия и калия в крови, плазмы и сыворотки в крови, гормонов роста и др. По существу, в околосуточном ритме колеблются все показатели эндокринные и гематологические, показатели нервной, мышечной, сердечно-сосудистой, дыхательной и пищеварительной систем. В этом ритме содержание и активность десятков веществ в различных тканях и органах тела, в крови, моче, поте, слюне, интенсивность обменных процессов, энергетическое и пластическое обеспечение клеток, тканей и органов. Этому же циркадианному ритму подчинены чувствительность организма к разнообразным факторам внешней среды и переносимость функциональных нагрузок. Всего к настоящему времени у человека выявлено около 500 функций и процессов, имеющих циркадианную ритмику.

Ритм сокращения сердца у человека, находящегося в состоянии относительного покоя, зависит от фазы циркадианного ритма. Основной земной ритм-суточный, обусловленный вращением Земли вокруг своей оси, поэтому практически все процессы в живом организме обладают суточной периодичностью. Все эти ритмы (а у человека их уже обнаружено более 100) определённым образом связаны друг с другом, образуя единую, согласованную во времени ритмическую систему организма. Эта система отражает взаимосвязанный ход околосуточных ритмов различных функций у человека, что даёт врачам и физиологам ценный материал для диагностики болезней и прогнозирования состояния пациентов. Приведём некоторые типичные характеристики циркадианной системы здорового человека. Масса тела достигает максимальных значений в 18-19 часов, температура тела- в 16-18 часов, частота сердечных сокращений — в 15-16 часов, частота дыхания — в 13-16 часов, гистологическое артериальное давление — в 15-18 часов, уровень эритроцитов в крови — в 11-12 часов, лейкоцитов — в 21-23 часа, гормонов в плазме крови — в 10-12 часов, инсулина — в 18 , общего белка крови -в 17-19 часов. Оценивая данную схему, следует указать на значительные индивидуальные отличия в ходе суточных ритмов, что делает необходимым дальнейшее исследование понятий «биоритмическая норма » и «биоритмическая индивидуальность», Нарушения ритма сна и бодрствования может привести не только к бессоннице, но и к расстройству сердечно-сосудистой, дыхательной и пищеварительной систем. Поэтому так важно соблюдать режим дня. Биоритмы интенсивно исследуются специалистами в области космической биологии и медицины, так как при освоении новых планет космонавты будут полностью лишены обычных ритмов среды.

Как уже отмечалось, реакция организма на любые воздействия зависит от фазы циркадианного ритма (т. е. от времени суток). Знание этой закономерности дало возможность сформулировать принципы хронофармакологии, хронодиагностики и хронотерапии. Основу их составляет положение о том, что одно и то же средство в разные часы суток оказывает на организм различное, иногда прямо противоположное воздействие.

С этих позиций пропись » По одной таблетке 3 раза в день» недостаточна: необходимо увязывать дозу препарата с конкретным временем его приёма. Например, эффективность строфантина, широко применяемого в кардиологии для улучшения насосной функции миокарда, изменяется в зависимости от времени суток, у некоторых пациентов-чуть ли не в 4 раза. Стало быть, если для достижения определённого эффекта в утренние часы достаточно половины дозы строфантина, то поздним вечером для того же эффекта нужны 2 дозы. Любое лекарство или яд по-разному влияет на организм в течение суток. На эту особенность обратили внимание ещё основоположники медицины в древнем Китае, которые составили «часы жизненной силы» и «часы заболеваний» того или иного органа. Особенно широкое применение эти «часы» нашли при иглоукалывании.

В основе хронодиагностики лежит представление о том, что возникновение заболевания уже на самых ранних, доклинических стадиях вызывает изменение ритмов определённых физиологических процессов, которое можно зафиксировать и таким образом выявить заболевание. Так, рак молочной железы может быть диагностирован по опережающему (во времени) сдвигу акрофазы (экстремума, т. е. минимума и максимума ) и уменьшению амплитуды циркадианного ритма температуры кожи груди. По степени синхронизации циркадианных ритмов пульса и температуры тела можно выявить переутомление при напряжённой операторской работе, спортивных тренировках и др.

Данные об онтогенезе биоритмов используются в возрастной физиологии, в гигиене детей и подростков. Установлено, что строгое соблюдение режима кормления новорождённого ребёнка ускоряет становление у него циркадианной ритмичности. При дефиците внимания со стороны матери ритмы сна-бодрствования у младенца становятся менее регулярными. В целом циркадианная система человека формируется вплоть до периода полового созревания. Старение же представляется биоритмологам как постепенная утрата ритмов. Отсутствие биоритмов не совместимо с жизнью.

2.3. Биоримологическая адаптация

Изучение адаптивных возможностей и закономерностей адаптации человека — одна из важнейших проблем биоритмологии и практической медицины. Известно, какое большое значение в жизнедеятельности организма имеет система гипоталамус- гипофиз -надпочечники. Помимо регулирования огромного числа функций организма она принимает участие в реакциях на стрессовые воздействия и, следовательно, защищает организм от повреждающих факторов. Через эту сложную систему происходит адаптация организма к изменяющимся условиям внешней среды. По мнению многих исследователей, эту систему следует считать одной из главных, которые регулируют биологические ритмы в организме.

С позиций учения о биоритмах, адаптация — это временное согласование функционального состояния организма и условий окружающей среды. Известный канадский физиолог Г. Селье, создатель учения о стрессе (или общем адаптационном синдроме), выделял в адаптационном процессе три стадии : тревоги, резистентности и истощения. Вначале, при нарушении синхронизации биоритмов организма и датчиков времени (астрономических, географических и социальных) возникает ситуация внешнего десинхроноза. Это бывает при трансмеридиальных перелетах с быстрым пересечением нескольких часовых поясов, а также при сменной работе. Ситуация внешнего десинхроноза вызывает состояние десинхроноза внутреннего, которое соответствует стадии тревоги. Заключается оно в рассогласовании циркадианных ритмов разных функций. В результате возникают такие неблагоприятные симптомы, как нарушение сна, ухудшение самочувствия и настроения, невротические расстройства. При этом падает работоспособность, снижается иммунитет, обостряются хронические заболевания.

Затем, через какой-то промежуток времени стадия тревоги купируется. Ритмы различных функций вновь приходят в фазовые соотношения, присущие устойчивой норме, причём весь ансамбль ритмов хорошо согласуется и с внешними датчиками времени. Это стадия резистентности. Если она не наступает, то ритмы разлаживаются, возникает полный десинхроз-аритмический хаос, который несовместим с жизнью. Поэтому стадия истощения может закончиться летальным исходом.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать реферат

Слаженность всей системы циркадианнных ритмов рассматривается как наиболее чуткий индикатор общего функционального состояния организма. Десинхроноз следует признать вредным для здоровья и профессионального долголетия тех, кто по долгу службы систематически вынужден нарушать суточный ритм сна-бодрствования.

Французские медики, обследовавшие лётчиков, выявили, что лица, занятые на маршрутах трансмеридиальных, существенно больше подвержены язвенной болезни и гастритам, чем те, кто летает вдоль меридианов. Нерегулярность ритма работы и частая ломка суточного стереотипа держат организм в стадии тревоги, которая не успевает переходить в стадию резистентности. Ведь из-за различной инерционности ритмов разных функций для синхронизации их требуется довольно длительное время. Если, например, москвич прилетел на Дальний Восток, то циркадианные ритмы перестраиваются у него на новый распорядок дня уже через 3-5 дней. Однако для нормализации ритма содержания калия требуется 2-3 недели. А циркадианный ритм содержания в крови биогенных аминов перестроится с московского на Владивостокское время только через 3-4 месяца. И все это время человек будет находиться в состоянии внутреннего десинхроноза, когда его резервные возможности снижены. Неслучайно американские бизнесмены, прибывающие в Европу, первые 2-3 суток стараются избегать участия в серьёзных сделках, чтобы не принять неправильных решений, а дают себе время для биоритмической адаптации. Особенного развития прикладная биология достигла в сфере авиационно-космической медицины. Программы пилотируемых космических полётов составляются на основе учёта биоритмов космонавтов. Причём работы намечаются для членов экипажа сообразно их биоритмическому типу-утреннему («жаворонок»), промежуточному («голубь») или вечернему («сова»). Как известно, человечество делится по принадлежности к этим типом в отношении 15: 50: 35. [2]

Биоритмы организма — суточные, месячные, годовые -практически остались неизменными с первобытных времён и не могут угнаться за ритмами современной жизни. У каждого человека в течение суток чётко прослеживаются пики и спады важнейших жизненных систем. Важнейшие биоритмы могут быть зафиксированы в хронограммах. Основными показателями в них служат температура тела, пульс, частота дыхания в покое и другие показатели, которые можно определить только при помощи специалистов. Знание нормальной индивидуальной хронограммы позволяет выявить опасности заболевания, организовать свою деятельность в соответствии с возможностями организма, избежать срывов в его работе.

Самую напряжённую работу надо делать в те часы, когда главнейшие системы организма функционируют с максимальной интенсивностью. Если человек «голубь», то пик работоспособности приходится на три часа дня. Если «жаворонок»-то время наибольшей активности организма падает на полдень. «Совам» рекомендуется самую напряжённую работу выполнять в 5-6 часов вечера. Выяснив свой хронотип, необходимо так планировать дневной график, чтобы с высшей интенсивностью трудиться именно в такие часы «пик». И, наоборот, избегать «насиловать» свой организм мощными физическими или интеллектуальными нагрузками в тот период суток, когда главные показатели: пульс, температура-понижаются до минимума. Как правило, у «сов» эта пора наименьшей работоспособности падает на 7-10 часов утра, у «жаворонков» она приходится на 7 часов вечера. В такое время организм функционирует в режиме отдыха, совершенно не готов к затрате сил. Ничего, кроме переутомления, работа в эти часы не даёт. Соблюдение биоритмов-одно из способов сохранить своё здоровье. Большое значение биоритмологическое тестирование приобретает с переходом промышленности на многослойный режим работы. Оптимальное, с учётом биоритмических особенностей распределение по сменам, а также всемерное использование прогрессивных форм регламентации труда, в том числе гибких графиков, позволит поднять уровень производительности труда и положительно скажется не только на профессиональном, но и на общем долголетии работающих.

Кстати, румынские учёные, проанализировав биоритмологический аспект феномена долгожительства, пришли к выводу о его непосредственной связи с сохранностью циркадианных ритмов долгожителей: мало кто из них был задействован на работе по скользящему графику или часто летал через часовые пояса.

Биоритмологической проблемой по своей сути является изучение и практическое использование закономерностей, присущих флуктуациям внимания человека в процессе непрерывной работы. При изучении этих флуктуаций обозначилась роль околочасовых ритмов. Эти ритмы усиливаются при утомлении, в монотонии. Если наблюдать за собой и своими попутчиками в дальней дороге, то можно отметить приступы сонливости, повторяющиеся примерно через полтора часа. Так, во время трёхчасовой поездки в электричке от Москвы до Рязани наступает не менее двух таких дремотных пауз. В оживлённом разговоре вдруг происходит снижение речевой активности одного из собеседников. На 5-10 минут он превращается в интроверта (замкнутого, малообщительного человека), его одолевает задумчивость, а то и наплывы грёз. Но вот он опять оживляется, включается в диалог с прежней энергией, — начался новый околополуторачасовой цикл активности. Ритм с периодом около 90 минут зарегистрирован не только для поведенческих реакций, но и для функциональных показателей организма. Он соответствует периодичности смены фаз ночного сна (как известно, сновидения приходят к нам через 90-100 минут). В этом же ритме активизируется моторика желудка. А что такое «академический час» определяющий продолжительность школьного урока от звонка до звонка? Не одно поколение учащиеся было охвачено этими датчиками времени. Такая продолжительность умственных занятий ведёт своё происхождение от средневековых европейских университетов, когда эмпирически было нащупано именно это, удобное для человека, чередование концентрированного и расслабленного внимания. Оказывается, полпериода одного из ведущих биоритмов- полуторачасового -на редкость благоприятны для регламентации интеллектуальной и оперативной работы.

О влиянии 11-летнего цикла солнечной активности на биосферу Земли сказано много. Но не все знают о тесной зависимости, существующей между фазой солнечного цикла и антропометрическими данными молодёжи. Киевские исследователи провели статистический анализ показателей массы тела и роста юношей, приходивших на призывные участки. Оказывается, что акселерация весьма подвержена солнечному циклу: тенденция к повышению модулируется волнами, синхронными с периодом «переполюсовки » магнитного поля Солнца (а это удвоенный 11-летний цикл, т. е. 22 года). Кстати, в деятельности Солнца выявлены и более длительные периоды, охватывающие несколько столетий.

Важное практическое значение имеет также исследование других многодневных (околомесячных, годовых и пр. ) ритмов, датчиком времени для которых являются такие периодические изменения в природе, как смена сезонов, лунные циклы и др. биоритмология ритм циркадианный адаптация

2.4. Теория трех ритмов

В последние годы широкую популярность приобрела теория «трёх ритмов», в основе которой лежит теория о полной независимости этих многодневных ритмов как от внешних факторов, так и от возрастных изменений самого организма. Пусковым механизмом этих исключительных ритмов является только момент рождения (по другим вариантам-момент зачатия) человека. Родился человек, и возникли ритмы с периодом в 23, 28 и 33 суток, определяющие уровень его физической, эмоциональной и интеллектуальной активности. Графическим изображением этих ритмов является синусоида. Однодневные периоды, в которые происходит переключение фаз («нулевые» точки на графике) и которые якобы отличаются снижением соответствующего уровня активности, получили название критических дней. Если одну и ту же «нулевую» точку пересекают одновременно две или три синусоиды, то такие «двойные » или «тройные » критические дни особенно опасны. Многократные исследования, проведённые с целью проверки этой гипотезы, не подтвердили, однако, существование этих сверхуникальных биоритмов. Сверхуникальных потому, что у животных аналогичных ритмов не выявлено; никакие известные биоритмы не укладываются в идеальную синусоиду; периоды биоритмов не постоянны и зависят как от внешних условий, так и от возрастных изменений; в природе не обнаружено явлений, которые являлись бы синхронизаторами для всех людей и в то же время были «персонально » зависимы от дня рождения каждого человека.

Специальные исследования колебаний функционального состояния людей показали, что они никак не связаны с датой рождения. Подобные исследования спортсменов, проведённые в нашей стране, в США и других странах, не подтвердили связи уровня работоспособности и спортивных результатов с ритмами, предлагаемыми в гипотезе. Показано отсутствие всякой связи различных несчастных случаев на производстве, аварий и других дорожно-транспортных происшествий с критическими днями людей-виновников этих событий. Проверены также методы статистической обработки данных, свидетельствовавших якобы о наличии трёх ритмов, и установлена ошибочность этих методов. Таким образом, гипотеза «трёх биоритмов» не находит подтверждения. Однако ее появление и разработка имеют положительное значение, так как привлекли внимание к актуальной проблеме-исследованию многодневных биоритмов, отражающих влияние на живые организмы космических факторов (Солнца, Луны, других планет) и играющих важную роль в жизни и деятельности человека.

Глава 3. Гипокинезия и гиподинамия

Гипокинезия (греч. hypo — понижение, уменьшение, недостаточность; kinesis — движение) — особое состояние организма, обусловленное недостаточностью двигательной активности. В ряде случаев это состояние приводит к гиподинамии. Гиподинамия (греч. hypo — понижение; dynamis — сила) — совокупность отрицательных морфо-функциональных изменений в организме вследствие длительной гипокинезии. Это атрофические изменения в мышцах, общая физическая детренированность, детренированность сердечно-сосудистой системы, понижение ортостатической устойчивости, изменение водно-солевого баланса, системы крови, деминерализация костей и т.д. В конечном счёте снижается функциональная активность органов и систем, нарушается деятельность регуляторных механизмов, обеспечивающих их взаимосвязь, ухудшается устойчивость к различным неблагоприятным факторам; уменьшается интенсивность и объем афферентной информации, связанной с мышечными сокращениями, нарушается координация движений, снижается тонус мышц (тургор), падает выносливость и силовые показатели. Наиболее устойчивы к развитию гиподинамических признаков мышцы антигравитационного характера (шеи, спины). Мышцы живота атрофируются сравнительно быстро, что неблагоприятно сказывается на функции органов кровообращения, дыхания, пищеварения. В условиях гиподинамии снижается сила сердечных сокращений в связи с уменьшением венозного возврата в предсердия, сокращаются минутный объем, масса сердца и его энергетический потенциал, ослабляется сердечная мышца, снижается количество циркулирующей крови в связи с застаиванием её в депо и капиллярах. Тонус артериальных и венозных сосудов ослабляется, падает кровяное давление, ухудшаются снабжение тканей кислородом (гипоксия) и интенсивность обменных процессов (нарушения в балансе белков, жиров, углеводов, воды и солей). Уменьшается жизненная ёмкость лёгких и лёгочная вентиляция, интенсивность газообмена. Все это сопровождается ослаблением взаимосвязи двигательных и вегетативных функций, неадекватностью нервно-мышечных напряжений. Таким образом, при гиподинамии в организме создаётся ситуация, чреватая «аварийными» последствиями для его жизнедеятельности. Если добавить, что отсутствие необходимых систематических занятий физическими упражнениями связано с негативными изменениями в деятельности высших отделов головного мозга, его подкорковых структурах ц образованиях, то становится понятно, почему снижаются общие защитные силы организма и возникает повышенная утомляемость, нарушается сон, снижается способность поддерживать высокую умственную или физическую работоспособность.

Средства физической культуры, обеспечивающие устойчивость к умственной и физической работоспособности

Основное средство физической культуры — физические упражнения. Существует физиологическая классификация упражнений, в которой вся многообразная мышечная деятельность объединена в отдельные группы упражнений по физиологическим признакам.

Устойчивость организма к неблагоприятным факторам зависит от врождённых и приобретённых свойств. Она весьма подвижна и поддаётся тренировке как средствами мышечных нагрузок, так и различными внешними воздействиями (температурными колебаниями, недостатком или избытком кислорода, углекислого газа). Отмечено, например, что физическая тренировка путём совершенствования физиологических механизмов повышает устойчивость к перегреванию, переохлаждению, гипоксии, действию некоторых токсических веществ, снижает заболеваемость и повышает работоспособность. Тренированные лыжники при охлаждении их тела до 35°С сохраняют высокую работоспособность. Если нетренированные люди не в состоянии выполнять работу при подъёме их температуры до 37—38°С, то тренированные успешно справляются с нагрузкой даже тогда, когда температура их тела достигает 39°С и более.

У людей, которые систематически и активно занимаются физическими упражнениями, повышается психическая, умственная и эмоциональная устойчивость при выполнении напряжённой умственной или физической деятельности.

К числу основных физических (или двигательных) качеств, обеспечивающих высокий уровень физической работоспособности человека, относят силу, быстроту и выносливость, которые проявляются в определённых соотношениях в зависимости от условий выполнения той или иной двигательной деятельности, её характера, специфики, продолжительности, мощности и интенсивности. К названным физическим качествам следует добавить гибкость и ловкость, которые во многом определяют успешность выполнения некоторых видов физических упражнений. Многообразие и специфичность воздействия упражнений на организм человека можно понять, ознакомившись с физиологической классификацией физических упражнений (с точки зрения спортивных физиологов). В основу её положены определённые физиологические классификационные признаки, которые присущи всем видам мышечной деятельности, входящим в конкретную группу. Так, по характеру мышечных сокращений работа мышц может носить статический или динамический характер. Деятельность мышц в условиях сохранения неподвижного положения тела или его звеньев, а также упражнение мышц при удержании какого-либо груза без его перемещения характеризуется как статическая работа (статическое усилие). Статическими усилиями характеризуется поддержание разнообразных поз тела, а усилия мышц при динамической работе связаны с перемещениями тела или его звеньев в пространстве.

Д Значительная группа физических упражнений выполняется в строго постоянных (стандартных) условиях как на тренировках, так и на соревнованиях; двигательные акты при этом производятся в определенной последовательности. В рамках определенной стандартности движений и условий их выполнения совершенствуется выполнение конкретных движений с проявлением силы, быстроты, выносливости, высокой координации при их выполнении.

Есть также большая группа физических упражнений, особенность которых в нестандартности, непостоянстве условий их выполнения, в меняющейся ситуации, требующей мгновенной двигательной реакции (единоборства, спортивные игры). Две большие группы физических упражнений, связанные со стандартностью или нестандартностью движений, в свою очередь, делятся на упражнения (движения) циклического характера (ходьба, бег, плавание, гребля, передвижения на коньках, лыжах, велосипеде и т.п.) и упражнения ациклического характера (упражнения без обязательной слитной повторяемости определённых циклов, имеющих чётко выраженные начало и завершение движения: прыжки, метания, гимнастические и акробатические элементы, поднимание тяжестей. Общее для движений циклического характера состоит в том, что все они представляют работу постоянной и переменной мощности с различной продолжительностью. Многообразный характер движений не всегда позволяет точно определить мощность выполненной, работы (т.е. количество работы в единицу времени, связанное с силой мышечных сокращений, их частотой и амплитудой), в таких случаях используется термин «интенсивность». Предельная продолжительность работы зависит от её мощности, интенсивности и объёма, а характер выполнения работы связан с процессом утомления в организме. Если мощность работы велика, то длительность её мала вследствие быстро наступающего утомления, и наоборот. При работе циклического характера спортивные физиологи различают зону максимальной мощности (продолжительность работы не превышает 20—30 с, причём утомление и снижение работоспособности большей частью наступает уже через 10—15 с); субмаксимальной (от 20—30 до 3—5 с); большой (от 3—5 до 30—50 мин) и умеренной (продолжительность 50 мин и более).

Особенности функциональных сдвигов организма при выполнении различных видов циклической работы в различных зонах мощности определяет спортивный результат. Так, например, основной характерной чертой работы в зоне максимальной мощности является то, что деятельность мышц протекает в бескислородных (анаэробных) условиях. Мощность работы настолько велика, что организм не в состоянии обеспечить ее совершение за счёт кислородных (аэробных) процессов. Если бы такая мощность достигалась за счёт кислородных реакций, то органы кровообращения и дыхания должны были обеспечить доставку к мышцам свыше 40 л кислорода в 1 мин. Но даже у высококвалифицированного спортсмена при полном усилении функции дыхания и кровообращения потребление кислорода может только приближаться к указанной цифре. В течение же первых 10—20 с работы потребление кислорода в пересчёте на 1 мин достигает лишь 1 —2 л. Поэтому работа максимальной мощности выполняется «в долг», который ликвидируется после окончания мышечной деятельности. Процессы дыхания и кровообращения во время работы максимальной мощности не успевают усилиться до уровня, обеспечивающего нужное количество кислорода, чтобы дать энергию работающим мышцам. Во время спринтерского бега делается лишь несколько поверхностных дыханий, а иногда такой бег совершается при полной задержке дыхания. При этом афферентные и эфферентные отделы нервной системы функционируют с максимальным напряжением, вызывая достаточно быстрое утомление клеток центральной нервной системы. Причина утомления самих мышц связана со значительным накоплением продуктов анаэробного обмена и истощением энергетических веществ в них. Главная масса энергии, освобождающаяся при работе максимальной мощности, образуется за счёт энергии распада АТФ и КФ. Кислородный долг, ликвидируемый в период восстановления после выполненной работы, используется на окислительный ресинтез (восстановление) этих веществ.

Снижение мощности и увеличение продолжительности работы связано с тем, что помимо анаэробных реакций энергообеспечения мышечной деятельности разворачиваются также и процессы аэробного энергообразования. Это увеличивает (вплоть до полного удовлетворения потребности) поступление кислорода к работающим мышцам. Так, при выполнении работы в зоне относительно умеренной мощности (бег на длинные и сверхдлинные дистанции)- уровень потребления кислорода может достигать примерно 85% максимально возможного. При этом часть потребляемого кислорода используется на окислительный ресинтез АТФ, КФ и углеводов. При длительной (иногда многочасовой) работе умеренной мощности углеводные запасы организма (гликоген) значительно уменьшаются, что приводит к снижению содержания глюкозы в крови, отрицательно сказываясь на деятельности нервных центров, мышц и других работающих органов. Чтобы восполнить израсходованные углеводные запасы организма в процессе длительных забегов и проплывов, предусматривается специальное питание растворами сахара, глюкозы, соками.

Ациклические движения не обладают слитной повторяемостью циклов и представляют собою стереотипно следующие фазы движений с чётким завершением. Чтобы выполнить их, необходимо проявить силу, быстроту, высокую координацию движений (движения силового и скоростно-силового характера). Успешность выполнения этих упражнений связана с проявлением либо максимальной силы, либо скорости, либо сочетания того и другого и зависит от необходимого уровня функциональной готовности систем организма в целом.

К средствам физической культуры относятся не только физические упражнения, но и оздоровительные силы природы (солнце, воздух и вода), гигиенические факторы (режим труда, сна, питания, санитарно-гигиенические условия). Использование оздоровительных сил природы способствует укреплению и активизации защитных сил организма, стимулирует обмен веществ и деятельность физиологических систем и отдельных органов. Чтобы повысить уровень физической и умственной работоспособности, необходимо бывать на свежем воздухе, отказаться от вредных привычек, проявлять двигательную активность, заниматься закаливанием. Систематические занятия физическими упражнениями в условиях напряжённой учебной деятельности снимают нервно-психические напряжения, а систематическая мышечная деятельность повышает психическую, умственную и эмоциональную устойчивость организма при напряжённой учебной работе.

Заключение

Физическое воспитание — организованный процесс воздействия на человека посредством физических упражнений, гигиенических мероприятий и естественных сил природы с целью формирования таких качеств и приобретения таких знаний, умений и навыков, которые отвечают требованиям общества и интересам личности.

Важно, чтобы физическая культура была частью общего здорового образа жизни. Разумный, хорошо отлаженный распорядок дня, правильное питание, активный двигательный режим вместе с систематическими закаливающими процедурами, которые обеспечивают наибольшую мобилизацию защитных сил организма, а, следовательно, максимальные возможности здоровья и активного долголетия. Таким образом, здоровый образ жизни направлен не только на охрану и укрепление здоровья, но и на гармоничное развитие личности, оптимальное сочетание физических и духовных интересов, возможностей человека, рачительное использование его резервов.

Список использованных источников

1. Данько Ю.И. Очерки физиологии физических упражнений, М.: Сов. Росиия, 1974;
2. Динейка К.В. Движение, дыхание, психофизическая тренировка, Минск, 1981;
3. Иванченко В.А. Секреты вашей бодрости, М. Инфра М, 1998;
4. Каптелин А.Ф. Восстановительное лечение (лечебная физкультура, массаж и трудотерапия) при травмах и деформациях опорно-двигательного аппарата, М., 1969;
5. Куценко Г.И., Новиков Ю.В. Книга о здоровом образе жизни, М.: Детская литература, 1987;
6. Минх А.А. Очерки по гигиене физических упражнений и спорта, М.: Просвещение, 2000.
7. Книга о здоровье, под ред. Ю.П. Лисицына, М., 1988.
8. Лечебная физическая культура, под ред. В.А. Епифанова, М., 1987;
9. Методические основы и формы лечебной физической культуры. Физиологические проблемы детренированности, под ред. А.В. Коробкова, М., 1970
10. Физиология человека, под ред. Н.В. Зимкина, М., 1975.
11. Физическая культура студента. Учебник для студентов вузов./ Под ред. В.И. Ильинича.- М.: Гардарики, 1999.
12. Физическая культура. Учебник для студентов технических ВУЗов./Под общей ред. В.А. Коваленко. – М.: «АСВ», 2000

Средняя оценка 0 / 5. Количество оценок: 0

Поставьте оценку первым.

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше?

5509

Закажите такую же работу

Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке