Введение

Внимание!

Если вам нужна помощь с работой, то рекомендуем обратиться к профессионалам. Более 70 000 экспертов готовы помочь вам прямо сейчас.

Подробнее Гарантии Отзывы

Успехи в освоении космического пространства (пилотируемые полеты на Луну, исследования. выполненные на орбитальной станции «Мир» и Международной космической станции (МКС), в ближнем космосе и на поверхности Луны и Марса, соответственно, луно- и марсоходами, с помощью спускаемого аппарата на Титане и др.), достижения в создании двигательных и энергетических установок, обеспечивших эти успехи (высокоэффективные жидкостные ракетные двигатели (ЖРД), солнечные энергетические установки, ядерные энергетические установки (термоэлектрическая типа ‹Бук»), электрические движители и др.), анализ развития космической техники позволяют из большого числа задач по исследованию и использованию космического пространства выделить перспективные, решение которых реально возможно на базе совершенствования созданных опытных конструкций, реализованных рабочих процессов и разработанных технологий перспективных энергетических установок.

В ближнем космосе на энергоемких околоземных орбитах одной из принципиальных и приоритетных задач является создание всепогодной круглосуточной оперативной высоко детальной системы наблюдения обширных районов земной поверхности и обеспечения специальной связи. Основным преимуществом одного из возможных методов наблюдения радиолокационного — по сравнению с методами наблюдения в оптическом диапазоне является независимость от метеоусловий и освещенности, что чрезвычайно важно для оперативных целей. Ряд стратегических и социально-экономических задач может быть решен только в условиях оперативного получения информации, и радиолокационные системы могут стать единственно приемлемыми. Для решения этих задач космические аппараты (КА) на геостационарной и геосинхронной орбитах должны располагать на борту десятками и сотнями киловатт электрической мощности.

Глобальная космическая задача — получение достаточной базы данных для построения модели происхождения и эволюции Солнечной системы. Эти данные будут способствовать построению надежной геохимической модели Земли и, соответственно, модели глобальных геологических процессов. Такая модель Земли необходима для разработки эффективной стратегии поисков и освоения новых ресурсов жизнеобеспечения человека. Ключ к понимаю механизма процессов, происходивших в период формирования‚ Солнечной системы, возможно, даст реликтовое вещество, собранное из различных ее областей.

Решение этих и целого ряда других задач (изучение Луны, Марса, обеспечение безопасности жизни на Земле и др.) возможно при использовании на борту космических аппаратов ядерных энергетических и энергодвигательных установок.

Ядерная энергодвигательная установка (ЯЭДУ) — двигательная установка космического аппарата с ядерным реактором мегаваттного класса, не имеющая аналогов в мире.

Начало работ над ядерными двигателями приходится на 1960-е годы. Ряд предприятий советской отрасли, в частности центр Келдыша, КБХА и Институт Доллежаля, принимали участие в этих работах, в результате которых был накоплен колоссальный опыт не только по работе с ядерными двигателями, но и по термоэмиссионным и термоэлектрическим энергоустановкам, а также по материалам и топливу.

В советское время c 1968 по 1988 гг. была выпущена серия спутников «Космос» с ядерными реакторами, но несколько аварий спутников этой серии вызвали большой резонанс.

Установки первого поколения от установки начала XXI в. отличались невысокой мощностью: установки типа «Бук», производимые в 1970-е гг. НПО «Красная звезда», имели мощность 5 киловатт, в то время как установка начала XXI в. имеет мощность в 200 раз выше — 1 мегаватт.

Отличие установок первого поколения от установок XXI века также заключается и в том, что реактор установки мегаваттного класса вырабатывает тепловую энергию, которая преобразуется в электрическую и далее расходуется на работу двигателя и другого оборудования, а её энергоблок работает по замкнутому циклу без выброса радиоактивных веществ. В реакторах первого поколения реактор был нужен для разогрева рабочего тела и создания реактивной тяги.

Нужна работа? Есть решение!

Более 70 000 экспертов: преподавателей и доцентов вузов готовы помочь вам в написании работы прямо сейчас.

Подробнее Гарантии Отзывы

1. Общие сведения о ЯЭДУ

Проект создания транспортно-энергетического модуля на основе ядерной энергодвигательной установки (ЯЭДУ) мегаваттного класса выполняется совместно предприятиями Росатома и Роскосмоса в соответствии с решением, принятым в 2009 году президентской комиссией по модернизации. Не имеющая аналогов энерготранспортная установка позволит создать качественно новую технику высокой энерговооруженности для изучения и освоения дальнего космоса. Новый проект предполагает использование ионных электрореактивных двигателей, в которых реактивная тяга создается за счет ускоренного электрическим полем потока ионов. При использовании космических ядерных энергоустановок можно приступить к решению таких задач, как полет на Марс, детальные исследования планет и их спутников, промышленное производство в космосе. Также можно будет заниматься очисткой околоземного космического пространства от космического мусора, бороться с астероидной опасностью, создавать на планетах автоматизированные базы.

Большими достоинствами проекта являются практически важные эксплуатационные характеристики — высокий ресурс (10 лет эксплуатации), значительный межремонтный интервал и продолжительное время работы на одном включении. Они не могут не впечатлять специалистов из других стран, в первую очередь США. 2. Устройство ЯЭДУ и характеристики

ЯЭДУ содержит три основных устройства:

) реакторную установку с рабочим телом и вспомогательными устройствами (теплообменник-рекуператор и турбогенератор-компрессор);

) электроракетную двигательную установку;

) холодильник-излучатель.

Рис. 1. Компоновка ЯЭДУ. Транспортно-энергетический модуль

Характеристики:

Габаритные размеры (рабочее положение), м 53,4-21,6-21,6

Электрическая мощность ЭБ, МВт 1,0

Удельный импульс ЭРД, км/с не менее 70,0

Мощность ЭРД, МВт не более 0,94

Суммарная тяга маршевых ЭРД, Н не менее 18,0

Ресурс, лет 10

Средство выделения РН «Ангара-А5»

Назначение

межорбитальная буксировка полезной нагрузки

на полезную нагрузку энергии (225 МВт)

Реактор ЯЭДУ вырабатывает тепловую энергию, которая преобразуется в электрическую. Электроэнергия расходуется на работу электроракетных двигателей и питание оборудования транспортного модуля. При этом энергоблок работает по замкнутому циклу — радиоактивные вещества не попадают в окружающее пространство. Уникальность проекта также и в использовании специального теплоносителя — гелий-ксеноновой смеси. В установке обеспечивается высокий коэффициент полезного действия.

В качестве топлива используется соединение (диоксид или карбонитрид) урана, но поскольку конструкция должна быть очень компактной, уран имеет более высокое обогащение по изотопу 235, чем в твэлах на обычных атомных станциях. Также, в отличие от обычной топливной энергетики, этому топливу придется работать при очень высоких температурах, что накладывает жесткие условия на выбор конструкционных материалов, которые смогут сдерживать негативные факторы, связанные с температурой, и в то же время позволят топливу выполнять его основную функцию — нагревать газовый теплоноситель. В связи с этим, оболочки твэлов изготовлены из монокристаллического сплава тугоплавких металлов на основе молибдена.

Этому топливу придется работать при очень высоких температурах. В обычной ядерной топливной энергетике температуры на тысячу градусов ниже. Поэтому необходимо было выбрать такие материалы, которые смогут сдерживать негативные факторы, связанные с температурой, и в то же время позволят топливу выполнять его основную функцию — нагревать газовый теплоноситель, с помощью которого будет производиться электроэнергия.

Проблема радиационной безопасности решается теневой защитой — реактор закрывают только с одной стороны, с той, где расположено оборудование и полезный груз. Излучение может свободно распространяться во все остальные стороны, там нет ничего, кроме космической пустоты. Так можно существенно сэкономить на весе защиты. Электроракетная двигательная установка (двигатель)

В 2010 году были сформулированы технические предложения по проекту. С этого года началось проектирование.

Скидка 100 рублей на первый заказ!

Акция для новых клиентов! Разместите заказ или сделайте расчет стоимости и получите 100 рублей. Деньги будут зачислены на счет в личном кабинете.

Подробнее Гарантии Отзывы

Известно, что с начала 1960-х годов в мире было разработано несколько типов электрореактивных двигателей: ионный, стационарный плазменный, двигатель с анодным слоем, импульсный плазменный двигатель, магнитоплазменный, магнитоплазмодинамический.

Исследовательский центр имени М.В. Келдыша (ранее РНИИ, НИИ-1, НИИТП) разработал и изготовил опытный образец ионного двигателя высокой мощности ИД-500. Его параметры такие: мощность 32-35 кВт, тяга 375-750 мН, удельный импульс 70000 м/с, коэффициент полезного действия 0,75.

На данном этапе опытный образец ИД-500 имеет электроды ионно-оптической системы, выполненные из титана с диаметром перфорированной отверстиями зоны 500 мм, катод газоразрядной камеры, который обеспечивает ток разряда в диапазоне 20-70 А и катод-нейтрализатор, способный обеспечить нейтрализацию ионного пучка в диапазоне токов 2-9 А. На следующем этапе разработки двигатель будет оснащен электродами из углерод-углеродного композиционного материала и катодом с графитовым подвижным электродом.

Принцип действия ионного двигателя следующий. В газоразрядной камере с помощью анодов и катодного блока, расположенных в магнитном поле, создается разреженная плазма. Из нее эмиссионным электродом «вытягиваются» ионы рабочего тела (ксенона или другого вещества) и ускоряются в промежутке между ним и ускоряющим электродом.

По планам, к концу 2017 года будет осуществлена подготовка ядерной энергодвигательной установки для комплектации транспортно-энергетического модуля (перелетного межпланетного модуля). К концу 2018 года ЯЭДУ будет подготовлена к летно-конструкторским испытаниям. Финансирование проекта осуществляется за счет средств федерального бюджета. Смета на период 2010-2018 гг. составляет 7245 млн руб.

На Земле для охлаждения электростанций используется либо вода, либо гигантские градирни. В космосе эти способы не доступны. Единственная возможность — охлаждение излучением. Нагретая поверхность в пустоте охлаждается, излучая электромагнитные волны в широком диапазоне, в том числе видимый свет.

Общая схема холодильника представлена на рис. 2 и 3

По состоянию на лето 2015 г. промежуточные результаты такие:

для экспериментального подтверждения принципа работы капельного холодильника-излучателя был проведен первый этап космического эксперимента «Капля-2» на российском сегменте Международной космической станции;

Закажите работу от 200 рублей

Если вам нужна помощь с работой, то рекомендуем обратиться к профессионалам. Более 70 000 экспертов готовы помочь вам прямо сейчас.

Подробнее Гарантии Отзывы

для теплообменных аппаратов выбрана, экспериментально обоснована и изготовлена моноблочная бескорпусная конструкция с использованием теплообменной матрицы из унифицированных штампованных пластин.

Рис. 2. Параметры холодильника ЯЭДУ

Рис. 3. Вариант компоновки ЯЭДУ в составе многоразового межорбитального буксира:

а) с панельным холодильником-излучателем

б) с капельным холодильником излучателем
Библиографический список

1.   Космические ядерные энергодвигательные установки сейчас возможны только в России [Электронный ресурс] // kommersant.ru Режим доступа http://kommersant.ru/doc/2810188/ (дата обращения: 04.04.2016).

. Юрий Драгунов: «С атомной энергетикой дальний космос станет ближе» [Электронный ресурс] // rosatom.ru Режим доступа http://www.rosatom.ru/journalist/interview/e6ecb98047f68a4a88998e4bb8ef3ea7/ (дата обращения: 04.04.2016).

Автор: Тагир