Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке

Научная статья на тему «Однокомпонентная полимерно-битумная мастика с повышенной теплостойкостью»

АННОТАЦИЯ. Целью данной работы является разработка однокомпонентной полимерно-битумной мастики с повышенной теплостойкостью. Был использован раствор нефтяного битума в толуоле, углеводородный термоэластопласт, изоцианатсодержащий полиэфируретановый форполимер и агент для «холодной вулканизации» диеновых полимеров. Разработанная мастика имеет высокую, по сравнению с аналогами, теплостойкость в сочетании с прочностью и эластичностью.

Помощь в написании статьи

Это связано с тем, что молекулы битума частично химически сшиваются с молекулами форполимера. Термоэластопласт также участвует в процессе образования химической сетки. Именно это и обеспечивает хорошие эксплуатационные характеристики мастики.

ABSTRACT

The aim of this work is to develop a single-component, polymer-bitumen mastic with high thermal endurance. Was used dissolved in toluene petroleum bitumen, hydrocarbon thermoplastic elastomer, a hydrocarbon thermoplastic elastomer, isocyanate prepolymer poliefiruretanovy and agent «cold vulcanization» for the diene polymers. Mastic has developed a high heat resistance in combination with strength and elasticity compared with analogues. This is due to the fact that the molecules are crosslinked bitumen partially chemically with molecules forpolimera. Termoelastoplast also involved in the formation of a chemical network. This is what provides good physical and mechanical properties mastic.

Ключевые слова : полиуретаны; битумы; форполимер; модификация; «холодная вулканизация»; теплостойкость.

Keywords: polyurethanes; bitumen; prepolymer; modification; “cold vulcanization”; high heat resistance.

Теплостойкость является важным показателем для мастик строительного назначения, в особенности, для мастик, работающих в условии воздействия повышенных температур, например, при нагреве кровли солнечными лучами или на горячих трубопроводах.

Композиции на основе битумов находят широкое применение в качестве кровельных гидроизолирующих и антикоррозионных материалов.

Покрытия на основе немодифицированных битумов при их доступности и дешевизне обладая хорошей водостойкостью и водонепроницаемостью, имеют такие существенные недостатки, как отсутствие эластичных свойств и низкая теплостойкость. Поэтому эти материалы обладают хрупкостью при отрицательных температурах, а также становятся пластичными (размягчаются) при повышенных температурах [10].

Известно использование эластомерных материалов в составе битумных мастик для придания им эластических свойств и повышения теплостойкости. Так, например, производятся однокомпонентные резинобитумные мастики, в которых эластичность достигается за счет введения в раствор битума в органическом растворителе (уайт-спирит, толуол) резиновой крошки [8]. Однако, хотя резиновая крошка за счет деструкции этаноламином и переводится в растворимое в битуме состояние, термостойкость материала для ряда областей применения не достаточно высокая, так же как и его прочность (таблица 1). Выпускаются также каучуково-битумные мастики [4; 5; 6; 7], в которых пластификатором-эластификатором служат твердые высокомолекулярные синтетические каучуки: полиизопреновый (СКН-3), полибутадиеновый (СКД) или дивинил-стирольный (СКС-30). Каучуки, хотя и растворяются в битумном растворе, однако, как сами по себе, так и в составе мастики после ее отверждения представляют собой мало прочные, нетеплостойкие материалы (прочность на разрыв 0.5—1.5 МПа, температура размягчения 50—70 °С [9]. Поэтому, как показано в таблице 1, теплостойкость таких битумных мастик, содержащих каучуковую добавку, находится на уровне резинобитумных мастик т. е. не выше 90—110 °С. Прочностные показатели мастик так же высоки.

Целью данной работы являлось разработка рецептуры однокомпонентной полимерно-битумной мастики на основе промышленно выпускаемых нефтяных битумов и лаков на основе, обладающей повышенной в сравнении с аналогами теплостойкостью за счет химического связывания («сшивания») самой битумной основы и частичной вулканизации полимерной составляющей. Разрабатываемый материал по всем другим показателем должен отвечать требованиям, предъявляемым к кровельным и гидроизоляционным мастикам.

В работе были использованы следующие материалы:

· Битумный лак БТ-577 (ТУ 2384-001-562906-59-01) производства ЗАО «Новобытхим», Санкт-Петербург, представляет собой раствор нефтяного битума в толуоле при масс. соотношении 1:2;

· Углеводородный термоэластопласт, гранулированный;

· Изоцианатсодержащий форполимер на основе простого полиэфиртриола и диизоцианата Т-80, мольное соотношение 1:2.05, содержание изоцианатных групп 2.6% масс.;

· п-динитробензол, ч.д.а.

Теплостойкость образцов мастики определялась по ГОСТ 15088-83 (суть метода в фиксации температуры, при которой происходит внедрение в материал иглы, находящейся под определенной нагрузкой, на глубину 1мм), прочность при разрыве, относительное удлинение, водопоглощение, водонепроницаемость, прочность сцепления с бетоном, гибкость на брусе (морозостойкость) — по ГОСТ 30693-2000, вязкость — на вискозиметре ВЗ-4.

Известно, что термоэластопласты, в отличие от каучуков, обладают высоким уровнем физико-механических показателей: прочность при разрыве до 30 МПа, относительное удлинение 800 % [10] и при этом хорошо растворяются в толуоле, что представлялось перспективным в его использовании для улучшения эластических и прочностных показателей разрабатываемых битумных мастик. Влияние дозировки термоэластопласта на вязкость его раствора в лаке БТ-577 представлено на рис. 1.

Нужна помощь в написании статьи?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Цена статьи

Рисунок 1. Зависимость вязкости раствора термоэластопласта а лаке БТ-527 по ВЗ-4 от состава раствора. (По оси Y — вязкость по ВЗ-5, минуты; по оси X — количество термопласта, % масс.).

 

Из рис. 1 очевидно, что оптимальная вязкость композиции достигается при содержании термоэластопласта 10—14 % масс., при более высокой его концентрации состав не технологичен (трудно наносимый).

После трех суток сушки при температуре 18—20 °С материал содержащий 12 % масс. термоэластопласта имел хорошие физико-механические характеристики:

прочность 1.3 МПа, удлинение 900 %, однако, теплостойкость такой мастики находилась на уровне рассмотренных выше аналогов (порядка 100—110 °С).

Битумы, являющиеся высококипящими продуктами переработки нефти, сланцев или каменного угля, представляют собой материалы весьма сложного химического состава, различающиеся в зависимости от местонахождения добычи полезного ископаемого, и состоят из различных ароматических углеводородов, азотсодержащих продуктов и т. п. [10]. Так, например, в состав выпускавшейся до 1996 года при добыче и переработке сланцев Сланцеперерабатывающим комбинатом (г. Сланцы, Ленинградская область) сланцевой битумной мастики СБН (ТУ 38.10989-89) входили фенолосодержащие углеводороды, что позволило использовать в рецептуре двухкомпонентной мастики с торговым названием «Битурэл» [3] на ее основе форполимер — полиоксипропилентриизоцианат в качестве отвердителя при массовом соотношении СБН:форполимер=70:30.

О наличии в промышленно выпускаемых нефтяных битумах каких-либо реакционноспособных функциональных групп конкретных сведений в литературе нет.

Было проведено исследование по возможности связывания молекул битума химической пространственной сеткой, что способствовало бы повышению его теплостойкости, за счет использования компонентов, теоретически способных реагировать с возможно присутствующими в структуре битума реакционноспособными группами. Исходя из предположения, что в используемом в данной работе нефтяном битуме возможно, по аналогии со сланцевым битумом, также содержатся фенольные группы, по рецептуре упомянутого выше материала «Битурэл» была приготовлена смесь лака БТ-577 с форполимером в соотношении 70:30. Оказалось, что после выдержки смеси при температуре 18—20 °С в течение трех суток, произошло ее отверждение с образованием эластомера с прочностью 0.8 МПа и удлинением 300 %. Это однозначно свидетельствует о наличии в нефтяном битумном лаке выбранной марки функциональных (гидроксильных) групп, реагирующих с изоцианатными группами форполимера. Поскольку задачей данной работы была разработка рецептуры однокомпонентной мастики с достаточно большим сроком хранения, полученный результат был использован для определения оптимального количества форполимера, которое обеспечивало бы протекание химического взаимодействия между битумом и форполимером, но, в то же время, не приводило бы к существенному возрастанию вязкости системы.

Влияние количества форполимера на изменение вязкости композиции: лак БТ-577 плюс 12 % масс. термоэластопласта в процессе ее хранения при комнатной температуре представлено на рис. 2. Из данных рис. 2 следует, что при всех дозировках форполимера вязкость состава достигает максимума в течение примерно 12 суток. При этом оптимальное содержание форполимера в композиции, обеспечивающее ее достаточно приемлемую вязкость для использования после завершения реакции битума с форполимером (возрастание вязкости примерно в 1,5—2 раза по сравнению с исходной), составляет 4—8 % масс.

Рисунок 2. Влияние дозировки форполимера на вязкость композиции лак БТ-577 + 12 %масс. термоэластопласта в процессе хранения при 18—20 °С. (По оси Y — вязкость по ВЗ-4 в минутах, по оси X— время хранения в сутках).

Кривая 1 — количество форполимера 4 %.

Кривая 2 — количество форполимера 8 %.

Кривая 3 — количество форполимера 12 %.

 

Нужна помощь в написании статьи?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Подробнее

Отвержденные образцы материала, полученные из мастики с содержанием 6 % масс. форполимера после выдержки ее при комнатной температуре в течение 12 суток, имели показатели: прочность при разрыве при 20 °С — 1.6 МПа, удлинение при разрыве 800 %, теплостойкость 120 °С. Чтобы еще больше повысить термостойкость разрабатываемого материала в качестве агента «холодной вулканизации» по двойным связям [1] для входящего в его состав термоэластопласта в работе был опробован п-нитробензол в количестве 1,0 % от массы всей композиции. Действительно, добавка п-динитробензола приводит к большему увеличению термостойкости отвержденной мастики за счет, по всей видимости, возрастания температуры размягчения самого термоэластопласта; при этом так же возрастает прочность материала (таблица 1).

Таким образом, в результате проведенной работы нами был подобран оптимальный состав однокомпонентной битумно-полимерной мастики, имеющий следующий состав:

· битумный лак БТ-577 — 100 масс ч.;

· углеводородный термоэластопласт —12 масс. ч.;

· изоцианат-содержащий форполимер на основе простого полиэфиртриола — 6 масс. ч.;

· п-динитробензол — 1.0 масс. ч.

В таблице 1 приведены эксплуатационные характеристики мастики разработанного состава в сравнении с показателями мастик-аналогов.

Таблица 1.

Эксплуатационные характеристики однокомпонентных битумно-полимерной мастик

Как следует из данных таблицы 1 теплостойкость разработанной мастики более чем на 25 % выше значения этого показателя для аналогов (135 и 90—110 °С, соответственно). Кроме того, новая композиция превосходит аналоги по прочности и эластичности.

По показателям водопоглощения (0,5 % за 24 часа), прочности сцепления с бетоном (0.6 МПа) и водонепроницаемости (72 часа при давлении воды 0.03 МПа) морозостойкости (гибкость на брусе R=5 мм при минус 50 °С) разработанная мастика соответствует требованиям, предъявляемым ГОСТ 30653-2000 к мастикам кровельным и гидроизоляционным.

Выводы:

Нужна помощь в написании статьи?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Цена статьи

1. Разработана рецептура однокомпонентной эластичной теплостойкой полимерно-битумной композиции.

2. Оптимальный состав мастики содержит 100 масс. частей лака БТ-577, 12 % масс. частей углеводородного термоэластопласта, 6 масс. частей изоцианат-содержащего форполимера на основе простого полиэфира и 1.0 масс. частей п-динитробензола.

3. Мастика обладает повышенной более чем на 25 %, в сравнении с аналогами , теплостойкостью, а так же более высокой прочностью и эластичностью в сочетании с водонепроницаемостью, водопоглощением¸ прочностью сцепления с бетоном, морозостойкостью и технологичностью, отвечающими соответствующим требованиям ГОСТ на мастики кровельные и гидроизоляционные.

Список литературы:

1.Вулканизация эластомеров. Изд. Химия, М. 1967 г., — 427 с.

2.Мастика кровельная, битумно-полимерная, NeoMast. ТУ 5775-032-11149403-2013

3.Мастика кровельная «Битурэл». ТУ 38. 403 770-1993.

4.Мастика битумно-полимерная. ГОСТ 30693-2000

5.Мастика кровельная ТехноНиколь 21. ТУ 5775-018-17925162-2004

6. Мастика кровельная ТехноНиколь 24. ТУ 5775-034-17925162-2005

7.Мастика кровельная ТехноНиколь 31 . ТУ 5775-007-72746455-2007

8.Патент Российской федерации RU 2209219.

9.Синтетический каучук. Изд. Химия, Ленинградское отделение, 1976 г, — 250 с.

10.Энциклопедия полимеров. Изд. «Советская энциклопедия», М., — 1972 г, — т. 1, — 267 с.

Нужна помощь в написании статьи?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Цена статьи

Средняя оценка 0 / 5. Количество оценок: 0

Поставьте оценку первым.

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше?

427

Закажите такую же работу

Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке